
'AD-A127 333 PRELIMINARY DESIGN AND IMPLEMENTADION OF A METHOD FOR 1/.l
TALIDOTINO EVOLVING ADA COMPLEMS(UD AIR FONCE INST OF
TECH WRIGOR-PATTERSON AFB OR SCHADLOF0 ENDI.

Ehhmhhhommhmuo
EhhmhEmhohhEEI
somhmmhhmh.I

1la- 1.2
L3.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-19A3-A

*1 '

,,- ,..+" Yl' "', --

k- t

AFIT/GCS/MA/83M-1

PRELIMINARY DESIGN AND IMPLEMENTATION
OF A METHOD FOR VALIDATING EVOLVING

ADA COMPILERS

Capt 1JSA

Approved for public release; distribution unlimited.

f

AFIT/GCS/MA/83M-1

PRELIMINARY DESIGN AND IMPLEMENTATION

OF A METHOD FOR VALIDATING EVOLVING

ADA COMPILERS

THESIS

Presented to the faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Accssion or
• TIS 6RA&

DTIC TAB
by Unjneouned

justiftiati o

Edward D. Miller Jr.

Capt US A Distribution/

o Graduate Computer Science Availability Codes

kvail and/or
March 1983 let Special

I Approved for public release; distribution unlimited.

disibuion.unimited

PREFACE

The Department of Defense funded the development of the

Ada Compiler Validation Capability (ACVC) for use in the

validation-testing of Ads compilers. The ACVC was targeted

to test only those compilers which implement the entire Ada

language. It appeared that the development of a testing

capability for evolving Ada compilers would be a very useful

tool for compiler developers. The need for such a tool

coupled with my desire to learn more about Ada led to the

selection of this thesis topic.

I would like to thank my advisor, Captain Roie R.

Black, for all the time and guidance he has given me. HisI
ideas and suggestions during the course of the project were

most helpful. I would also like to thank my thesis-committee

members, Lieutenant Colonel Harold W. Carter and Major

Michael R. Varrieur. Their suggestions and commments were

very valuable.

Deep gratitude is also expressed to Patricia A. Knoop

of the Language Control Branch, Computer Operations

Division, Aeronautical Systems Division, Wright-Patterson

AFB, Ohio, who originally proposed the topic and provided

the resources needed during the project.

Finally, I would like to thank my parents for all the

support and encouragement they have given me.

ii

Contents

Page

1. INTRODUCTION 1
1.1 Background -- DoDls Software Problem 1

1.1.1 The proliferation of languages 2
1.1.2 The High Order Language Working Group 3
1.1.3 The search for a solution 3
1.1.4 Design Phase 4
1.1.5. The need for a standard 4
1.1.6 The Ada Compiler Validation Capability 5
1.1.7 Ada compiler development 6
1.1.8 The need for an incremental

validation capabilty 6
1.2 Objective 7
1.3 General Approach 7
1.4 Sequence of Presentation 8

*2. ANALYSIS 10
2.1 Introduction 10
2.2 Background 10

2.2.1 Approach to testing 11
2.2.2 Test set design 11
2.2.3 Test set organization 13

2.3 General structure 17
2.3.1 Report Package 17
2.3.2 Tests 18

2.4 Detailed Analysis 19
2.4.1 Class A 20
2.4.2 Class C 24
2.4.3 Class D 26
2.4.4 Class B 27
2.4.5 Class L 28

.22.4.6 Class E 29
2.5 Summary 29

3. PROJECT DEVELOPMENT 30
3.1 Introduction 30
3.2 Overview 30
3.3 Identification of language-features 32
3.4 Development of a representation 35
3.5 Removal of unsupported features 39

3.5.1 Outputting the modified representation 44
3.6 Summary 44

4. IMPLEMENTATION 4
4.1 Introduction 45
4.2 Input "5
4.3 Data Structures 46
4.4 Output 48

S4.5 Limitations 48

11

Contents

Page

5. Recommendations and Conclusions 53

5.1 Introduction 53
5.2 Recommendations 53
5.3 Conclusions 54

Bibliography 56
Appendix A - Evolving Compiler Development 57
Appendix B - Report Package 60
Appendix C - BNF 66
Appendix D - Removal of language-features from

valid tests 85
Appendix E - Manual evaluation of tests 89
Appendix F - Description of Garlington Compiler 100
Appendix G - Modifications to the Garlington compiler 102
Appendix H - Empty productions 103
Appendix I - Recursive productions 104

* i

LLI- !

List of Fi ures

Fiture -Page

2-1 LRM definition of identifier structure 15
2-2 ACYC test objective and design guidelines 16
2-3 Class A Test 21
2-4 Repackaged Structure for Class A tests 22
2-5 Class C test 2
2-6 Restructured Class C test 25
2-7 Class D test 26
2-8 Class B test 27
2-9 Class L test 28

3-1 Overview of Test Development Process 31
3-2 Internal structure of Modify Test Program 32
3-3 Parse tree representation 36
3-4 Representation of a production 36
3-5 Representation *of Program ::= coapi-unit-list 38
3-6 Representation of Production 4 is added 38
3-7 Representation of a recursive production 40
3-8 Representation of a potentially

empty production 42
3-9 Representation after production is eliminated 43

4-1 Data structure used to represent productions 47
4-2 Test with records and arrays removed 50
4-3 Test with record removed 51
4-4 Complete test 52

D-1 Class A test 86
D-2 Class A test with record removed 87
D-3 Class A test with records and arrays removed 88

.1E-1 Test segment analyzed manually 89

.1v

L

AFIT/GCS/MA/83M-l

ABSTRACT

6This project consisted of a preliminary design and a

partial implementation of a tool which modifies the existing

Ada Compiler Validation Capability (ACVC) test set so it can

be used to test evolving Ada compilers. The project

evaluated the feasibility of repackaging each of test

classes found in the ACVC and suggested methods for

repackaging the tests. The tool developed uses a

table-driven parser which parses the July 1980 proposed

standard. It uses output from the parser to generate a

representation of a test program. Once the representation is

developed, unsupported langauge-features are removed from

it. The remaining representation is output as a valid test

program.

S 4

vi

' t M

1. INTRODUCTION

In order to combat the rising cost of software in

embedded computer systems, the Department of Defense (DoD)

sponsored efforts which led to the design of the Ada

programming language. The efforts were not limited to the

design of a new programming language; DoD also sponsored

efforts to develop the Ada Programming Support Environment

(APSE) and the Ada Compiler Validation Capability (ACVC).

This thesis project is based on the results of the ACVC

developed by "The Software Technology Company" (SofTech).

Specifically, it investigates the problem of modifying tests

contained in the ACVC so they can be used to test evolving

Ada compilers (described in Appendix A). The project was

proposed and sponsored bk the Language Control Branch,

Computer Operations Division, Aeronautical Systems Division

Computer Center, Wright-Patterson AFB.

This chapter begins by providing background information

on the development of the Ada programming language and the

ACVC. It concludes with an introductory description of the

thesis project.

1.1 Background -- DoD's Software Problem

Intensive studies completed in the early 1970's

identified the software costs associated with embedded

computer systems as the most significant DoD software

. 1

problem. These studies also revealed that the majority of

the embedded computer system costs were related to software

maintenance rather than software development (Ref 4:24).

1.1.1 The proliferation of languages

A principle factor contributing to the rising cost of

embedded computer system software was the large number of

languages used within the DoD. Over 450 general-purpose

languages and dialects were being used, and the majority of

these languages were used in embedded computer systems.

This lack of programming language commonality contributes to

the rising software costs in several ways (Ref 4:26):

(1) it requires duplication in training and maintenance

for the languages, their compilers, nd their

associated software support packages.

(2) it limits communication among software

*1 practitioners.

(3) it results in. support software being developed

which can only be used on one project.

(4) it ties software maintenance to the original

U developer.

*(5) it limits the development of support and

maintenance software.

(6) it limits the applicability of new support

* software.

I (7)it creates a situation in which the adoption of an

I 2

existing language by a new project can be more risky

and less cost-effective than the development of a new

programming language specialized to the project.

1.1.2 The High Order Language Working Group

In order to resolve the problems presented by the large

number of languages, the DoD began a common high order

language programming effort. To coordinate this effort, a

High Order Language Working Group (HOLWg) was formed. This

group consisted of representatives from the Army, Navy, Air

Force, Marine Corps, Defense Communications Agency and

Defense Advanced Research Projects Agency. The HOLWG was

chartered to "investigate the establishment of a minimal

number of common high-order computer programming languages

to be used in the development, acquisition, and support of

computer resources embedded within Defense Systems" (Ref

4:27).

1.1.3 The search for a solution

The first step taken by the HOLWG was to adopt an

interim list of seven programming languages approved for use

in the development of new defense system software. The

second step was to determine the characteristics of a

general-purpose programming language suitable for embedded

computer applications. These characteristics were put in

the form of requirements which were circulated to the

military, industrial and academic communities for comments.

3

9

- - - ----- - - -9--- I - -il-IL *---- . -

After the comments were received and evaluated, a new

requirements list was circulated. This process was repeated

until a suitable language description was defined.

The next step was an evaluation to determine if any

existing language met the requirements specified in the

language description. The results obtained from evaluations

of 23 different languages led the HOLWG to conclude that no

existing language satisfied the requirements well enough to

be adopted as a common language. Even though no existing

language was found suitable, the evaluators did agree that

it was possible to design a single language that would meet

all the requirements. Based on this finding, the HOLWG

began directing their efforts toward the design of a new

language (Ref 4:27).

1.1.4 Design Phase

The design phase evaluated fifteen design proposals

received for the new language description. Of these, four

were selected for parallel development efforts. At the

conclusion of these efforts, the language definition

developed by CII Honeywell-Bull was accepted as the basis

for the new DoD language, now known as Ada (Ref 4:29).

1.1.5 The need for a standard

The key to the economic success of Ada is the

portability of programs, programmers, compilers and software

tools. To insure portability it was essential that Ada be

4

established as a clear and unambiguous standard. In

addition a means for discouraging and detecting compilers

which did not correctly implement the standard was needed.

This led to the trademarking of the name Ada and the

development of a means for validating compilers.

1.1.6 The Ada Compiler Validation Capability

The Ada Compiler Validation Capability (ACVC) effort

began at SofTech in September of 1979, and the first version

was completed in 1981. It is especially significant because

it makes Ada the first programming language to have a means

of enforcing the language specification before diverse

implementations begin to appear (Ref 6:57).

The primary purpose of the ACVC was to determine if Ada

compilers comply with the language definition contained in

the "Reference Manual for the Ada Programming Language".

The ACVC was also designed to help the implementers comply

with the language standard, by pointing out potential

implementation difficulties (Ref 6:57).

The current version of the ACVC has three main

components (Ref 2:1-1):

1. An Implementers Guide (IG) which describes the

implementation implications of the Ada standard and

conditions which are to be checked by the validation

tests.

5

2. Test'programs that are submitted to the compiler

being tested. The current version of the ACVC has over

1400 tests designed to check the compilers conformance

to the language specification.

3. Validation support tools that are used to prepare

tests for execution and to analyze the results of

execution.

1.1.7 Ada compiler development

Widespread acceptance of the Ada programming language

is not likely to occur until compilers become readily

available. Currently there are a large number of compiler

development efforts under way. The first successful

validation of an Ada compiler was expected to occur in late

1982.

A large number of the compiler development efforts are

being directed at the microcomputer market. The approach

many of these efforts have taken is to develop a basic

subset of the full Ada language. Once the subset is

developed, enhancements are then added to it until the

entire language is implemented (Appendix A provides a more

detailed discussion of a typical development effort).

Developers of these subsets have encountered a large

number of problems. Two of the major problems are the

complexity of the language and the lack of adequate support

tools needed during the compiler development process.

6

1.1.8 The need for an incremental validation capability

A significant aspect of the ACVC is that it is targeted

to test only those compilers which are completed and

implement the entire language. As a result, the ACVC uses

language features which are likely to be supported only

toward the end of the compiler construction. This severely

limits the usefulness of the ACVC during the development

phases of a compiler. This is significant because the cost

of repairing an error is reduced if it is detected soon

after it is committed. This makes the availability of

* adequate test tools for compilers essential during the

developmental stages. Errors made during the early stages of

the compiler development could be extremely costly if they

go undetected until attempts are made to validate the

* compiler.

* 1.2 OBJECTIVE

The objective of this project was to develop techniques

for transforming the existing ACVC test set into a version

which could be used to test evolving Ada compilers.

1.3 GENERAL APPROACH

The approach taken in this project was significantly

influenced by the requirement for Ada compilers to pass the

ACYC. As a result of this requirement, the project was

directed toward modifying the current set of ACYC tests

rather than attempting to develop a completely new test set.

4

The approach taken was to remove any language-features

used in the test set that are not supported by the compiler

being tested. Once the unsupported features are removed, the

compiler should pass the remaining portion of the test set.

Automating the process which removes unsupported features

from the tests would allow a new test set to be developed

every time new features are added to the compiler.

The advantage of this approach is that the actual ACVC

tests are being used. Tests are incorporated into the test

set as soon as the language-features used by the test are

supported by the compiler. The test set will continue to

grow as the compiler becomes more complete. Passing tests or

portions of tests used in the ACVC should provide some

degree of confidence that the actual ACVC tests can be

passed. It will also help point out deficiencies in the

compiler early in the development stages.

1.4 SEQUENCE OF PRESENTATION

The project consisted of three major phases, which are

described in the following chapters. The first phase was an

analysis of the existing ACVC. This phase studied the

different types of tests contained in the ACVC and

identified the use of language features in the tests which

were not related to the test objectives (language features

that are used unnecessarily will be referred to as

langauage-feature dependencies). The analysis phase then

looked for ways the tests could be repackaged without the

8

language-feature dependencies.

The second phase of the project investigated the

problem of transforming the test set into a version that

could be used to test evolving compilers. This focused on

f the removal of features not yet supported in an evolving

compiler. Particular emphasis was placed on the automation

of a process to accomplish this.

The third phase was a partial implementation of the

tool described in the second phase. The purpose of the

partial implementation was to demonstrate that it was

possible to automate the removal of unsupported language

features.

2. ANALYSIS

2.1 Introduction

The first step in this project was a detailed analysis

of the existing ACVC test set. The purpose of this analysis

was to identify the language-feature dependencies contained

in the ACVC test set and determine what impact their removal

would have on the test set. This requires a basic

understanding of the ACVC's approach to testing, its design

goals, its organization, and the general structure of the

test set.

This analysis is broken into four sections. The first

section provides background information on the testing

approach, the design goals, and the organization of the test

set. The second section looks at the the general structure

of the test set, while the third section provides a detailed

look at some of the tests found in the test set. The fourth

section summarizes the results of the analysis.

2.2 Background

The first step in the analysis of the ACVC was to

review the test set. This review looked at the testing

approach taken by SofTech, some of the factors that

influenced the design of the test set, and the organization

of the test set.

10

ttI

I

2.2.1 Approach to testinU
Black-box and white-box testing are the two generally

accepted approaches to testing. White-box testing is

predicated on a detailed knowledge of the internal workings

of a product. Tests are designed to determine if internal

operations are performed according to specification.

Black-box tests, on the other hand, are designed to

demonstrate that the functions a product is supposed to

perform are operational. The internal structure of the

software is not considered when designing black-box tests

(Ref 7-292).

The designers of the ACVC used the black-box approach

to testing. This was appropriate since the ACVC was designed

to determine only if the compiler conformed to the language

definition. Issues such as quality and efficiency were not

considered when designing the test set. Also, to use the

white-box approach would have required a detailed knowledge

of each compiler submitted for validation. Since the manner

in which various tasks are implemented may differ greatly

between compilers, a new test set would be required for each

compiler submitted for validation.

-i

2.2.2 Test set design

Before making any changes to the test set several

factors which influenced its design must be considered. This

section will briefly describe some of the design goals of

the test set and some of the factors which had a significant

t

-- _J 22 -- - .. .11

influence on the design of the test set.

One of the ACVC's principle design goals was to develop

a test set which was portable. To accomplish this, SofTech

adopted the following set of coding standards in their test

set (Ref 3:A-2):

(1) The source line length in test programs does not

exceed 72 characters.

(2) Tests are limited to the basic 55 character set.

(3) Numeric values were limited so that a 12 bit word

size is sufficient.

(4) Array sizes are kept small.

(5) No tests use both fixed and floating-point types

unless the test objective addresses interactions between

these types.

t (6) Unnecessary use of fixed and floating-point types,

integer types other than INTEGER, access types, tasks,
generics, representation specifications, subunits,

exceptions, overloading, renaming, private types, and

input/output is prohibited.

In addition to insuring that the test set is portable,

these coding standards also help reduce the number of

failures that are not related to the test objectives (Ref

6:60).

Another design goal was to reduce the manual

intervention required when using the test set. It resulted

in the development of a large number of small tests which

12

require no modification during the testing process (Ref

6:59).

The need for the ACVC to be constantly updated also

impacted on its design. Black-box tests cannot guarantee

that software is error free. Therefore as errors are found

in compilers which successfully passed the validation test,

new tests must be developed to insure that these errors are

identified in future validation attempts. This was another

reason the use of small tests was adopted in the test set

(Ref 6:59).

Finally, the decision to test only completed compilers

was significant since it allowed features normally supported

only towards the end of a compiler's development to be used.

The prime example of this is a- separately compiled package

used to report test results (Report Package).

2.2.3 Test Set Orzanization

The tests in the test set are organized to correspond

with objectives contained in the Implementers' Guide. These

objectives can be broken into eleven major areas:

1. Lexical Elements
2. Declarations and Types
3. Names and Expressions
4. Statements
5. Subprograms
6. Packages
7. Visibility Rules
8. Tasks
9. Program structure and compilation issues
10. Exceptions
11. Generic program units

13

The Implementers' Guide was designed to correspond with

the "Reference Manual for the Ada Programming Language"

(LRM). Objectives found in the IG were based on the language

definition contained in the LRM.

The language definition was reviewed to identify

potential implementation difficulties. A set of test

objectives was then developed to insure these potential

deficiencies were identified during testing. The final step

was to develop tests which would accomplish the test

objectives.

Figures 2.1 and 2.2 reflect the relationship that

exists between the LRM and the IG. Figure 2.1 is an example

of the language definition taken from the LRM, while Figure

2.2 is a list of the test objectives taken from the IG that

correspond to the language definition in Figure 2.1.

The language definition presented in the LRM uses a

simple variant of the Backus-Naur form (BNF). The BNF is

used to specify the rules for forming valid programs. These

rules are called productions. Figure 2-1 shows the

productions that define an identifier in Ada. The LRM uses

square brackets to enclose optional items, braces to

identify items which may occur repeatedly (zero or more

times), and vertical bars (I) to separate alternative items.

14

A --- -

2.3 Identifiers

Identifiers are used as names (also as reserved words).

Isolated underscore characters may be included. All

characters, including underscores, are significant.

identifier ::-

letter [underscore] letteror.digit}

letteror digit ::= letter I digit

letter ::- uppercase letter I lower_caseletter

Note that identifiers differing only in the use

of corresponding upper and lower case letters are

considered as the same.

Figure 2-1. LRM definition of identifier structure (Sec 2.3)

The productions shown in figure 2-1 show that identifiers

must begin with a letter. They also show that consecutive

underscores are not permitted in identifiers, and that

identifiers cannot end with an underscore.

i 15

-- -- --- _-- -- -

Test Objectives and Design Guidelines

1. Check that upper and lower case letters are
equivalent in identifiers (including reserved words).

Implementation Guideline: Try some all-upper,
all-lower, and mixed case identifiers.

2. Check that consecutive, leading, and/or trailing
underscores are not permitted in identifiers.

3. Check that identifiers can be as long as the maxi--um
input line length permitted by the implementation
and that all characters are significant (e.g., not
just the first 8 or 16, or not just the first m and
last n characters). Try-.identifiers serving as
variables, enumeration literals, subprogram names,
parameter names, entry names, record component names,
type names, package names (both library units and
and subunits), statement labels, block labels, loop

labels, task names, and exception names.

Implementation Guideline : Maximum length subprogram
names and package names should be checked in separate
tests.

4. Check that ? Z @ # 'are not permitted in
identifiers.

Figtre 2-2. ACVC test objectives and design guidelines
(section 2.3)

16

2.3 General Structure

The second step in the analysis looked at the structure

of the test set. The test set has two primary components,

the Report Package and the tests. This section will present

an overview of each of these components.

2.3.1 Report Package

The report package is a separately compiled group of

routines used to automate the process of reporting test

results. They are independent of the tests themselves, and

provide the mechanism for reporting pass/fail results of

executable tests (Ref 3:A-1).

The report package (see Appendix B for the source

listing) contains the following subprograms (Ref 3:B-1):

1. Test: This procedure is called at the beginning of

all executable tests. It saves the test name and

outputs the name and description.

2. Failed: This procedure outputs a failure message

that includes a brief description of what failed.

3. Comment: This procedure outputs a comment message.

4. Result: This procedure is called at the end of

each test. It indicates whether whether the test has

passed or failed.

17

5. PutMsg: This procedure formats and outputs

messages. It can only be called within the package

itself.

6. Identint, Ident_char, Identbool, and Identstr:

These functions are dynamic value routines which serve

as identity functions for the types Integer, Character,

Boolean and String.

7. Equal: A recursive equality function for the type

integer.

2.3.2 Tests

The tests in the ACVC are written to correspond to the

objectives listed in the Implementers' Guide. There are six

distinct classes of tests which may be found in the test set

(Ref 6:60):

Class A: These tests are designed to compile and

execute without any errors. No checks are made at

run-time to determine if a test objective has been met.

Class B: These tests are illegal and should fail

compilation. They are passed if all errors are

detected at compile time and all legal statements are

considered legal.

18

Class C: These tests are designed to compile and

execute. They are self-checking.

Class D: These are capacity tests. There Are no

pass/fail criteria.

Class E: These are tests that check whether certain

implementation dependent options have been provided.

They also determine how ambiguities in the language

standard have been resolved.

Class L: These are illegal programs that are expected

to fail at link-time. The failure must oc,; before

any declarations in the maiP, prog,-,S or any units

referenced in the main program are elaborated. They may

fail compilation in some implementations.

* 2.4 Detailed Analysis

This section will provide a detailed analysis of each

type of test found in the test set. It will specifically

address four questions:

(1) What language-feature dependencies exist ?

(2) What effect will their removal have ?

(3) How can the test be repackaged to eliminate the

language-feature dependencies ?

(4) Can the repackaged tests be used to test evolving

compilers, or are further modifications needed ?

19

2.4.1 Class A

As mentioned before, Class A tests are designed to

compile without any errors. Approximately two percent of the

tests found in the test set are Class A tests. A typical

example of a Class A test is shown in figure 2-3.

The test shown in figure 2-3 uses several language

features which do not contribute to the accomplishment of

the test objectives. The first dependency is the WITH REPORT

statement. It is used to indicate the dependency of the

procedure on the Report Package. The second dependency is

the USE REPORT statement, which acts like a declaration tn

the procedure. The final two dependencies are the procedure

calls TEST and RESULT. Both of these procedures are found in

the separately compiled REPORT package.

After identifying the dependencies, the next step is to

, determine what effect their removal would have on the test

set. The first consideration is whether the test objectives

will still be accbmplished. Since the purpose of the

statements containing the dependencies is to report the

pass/fail status of the tests, there is no impact on the

test objectives. Another consideration is whether the

initial design goals are still accomplished. In this case

the removal of the dependencies would result in a

significant increase in the manual effort required to

analyze test results. Therefore the initial design goals

would not be accomplished.

20

_~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~;ww M.......... , : _.

- A21001A.ADA
-- CHECK THAT THE BASIC CHARACTER SET IS ACCEPTED
- OUTSIDE OF STRING LITERALS AND COMMENTS.
-- DCB 1/22/80

WITH REPORT;
PROCEDURE A21001A IS

USE REPORT;

BEGIN
TEST ("A210O1A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLARE

TYPE TABLE IS ARRAY (l..10) OF INTEGER;
A : TABLE :- (2 1 4 1 10 -> 1 , 1 I 3 1 5..9->0)

USE OF (C ,
TYPE BUFFER IS

RECORD
LENGTH : INTEGER;
POS : INTEGER;
IMAGE : INTEGER;

END RECORD; - USED TO TEST . LATER

R1 : BUFFER;
ABCDEFGHIJKLM : INTEGER; - USE OF ABCDEFGHIJKLM
NOPQRSTUVWXYZ : INTEGER; - USE OF NOPQRSTUVWIYZ
Z_1234567890 : INTEGER; - USE OF 1234567890

I, 12, 13 : INTEGER;
Cl, C2 : STRING (1..6);
C3 : STRING (l..12);

BEGIN
II :- 2 * C 3- 1 + 2) / 2 ; 12 :- 8 ; - USES () * +- / ;
Cl :-"ABCDEF" ; -USE OF"
C2 :m Cl;
C3 :-C1 & C2; -USE OF &
12 :-16#D#; -USE OF #
13 :- A'LAST; - USE OF
R1.POS :- 3; -USE OF
IF I1 > 2 AND

I1 A U E AND
Il < 8 THEN USE OF > <
NULL;

END IF;
END;
RESULT;

END A21001A;

Figure 2-3. Class A Test

21

~ -- -- - -- - -i

The next step is to look for a way the tests can be

constructed without the language-feature dependencies. The

problem is that there is a need for the capability to report

test status, therefore there will always be language-feature

dependencies. Since the dependencies cannot be completely

eliminated, emphasis should be placed on developing a method

for reporting the status using language features likely to

be supported early in a compiler's development. Special

emphasis must be placed on eliminating the nee-d-f.or separate

compilation, since it is usually not implemented-zi-athe

early stages of a compiler development effort.

procedure sample -test is
procedure test is

begin
-- code

end;I procedure result;
begin

-- code
end;

begin
test;

-- code
result;

end;

Figure 2-4. Repackaged Structure for Class A tests

There are several ways the test set could be repackaged

to reduce the language dependencies. Perhaps the simplest

method is to insert the TEST and RESULT procedures into the

actual test in the manner shown in figure 2-4.

22

This method would require the insertion of two

procedures in the test and the elimination of the WITH and

USE statements. Also the manner in which input/output is

handled must be considered since the TEST and RESULT

procedures require some means of input/output. In the'REPORT

package the dependency on TEXT_10 is declared. The manner in

which input/output is handled in evolving compilers varies

greatly, so the actual code for the TEST and FAIL procedures

will probably need to be rewritten for each compiler being

tested.

The final question considered is whether Class A tests

could be used to test evolving compilers once the

language-feature dependencies are removed. The answer

depends on what language features are implemented by the

compiler being tested, and what features are used in the

tests. For instance, the test shown in figure 2-3 would

fail if the compiler being tested did not support the record

structure. This means for Class A tests to be usable, some

means for identifying language features must exist. Tests

that use features not supported by the compiler must either

be eliminated from the test set, or the features not

supported must be eliminated from the test. In the case of

the test in figure 2-3, the type declaration of buffer, the

declaration of Rl as type buffer, and the assignment

statement Rl.pos :-3 could be removed. The resulting teat

could then be used to test evolving Ada compilers which do

not support records.

23

- C27001A.ADA

-- CHECK THAT A COMMENT IS TERMINATED BY THE END OF HVE
-LINE, AND NOT BY THE NEXT - (ELSE THIS COMMENT WILL BE
- TREATED AS CODE).

- DCB 1/16/80

WITH REPORT;

PROCEDURE C27001A IS
USE REPORT;

II : INTEGER;
BEGIN

TEST("C27001A","COMMENTS TERMINATED BY END OF LINE");

I1 :- 5; - I1 INITIALIZED.

- BELOW CHECKS THAT A COMMENT IS TERMINATED BY END OF LINE
I1 :- II + 7;
IF Il /- 12 THEN

FAILED("C(MENTS NOT TERMINATED BY END OF LINE");
END IF;

f RESULT;
END C27001A;

Figure 2-5. Class C Test

2.4.2 Class C

Class C tests are very similar to the Class A tests.

The primary difference is that Class C tests have a run-time

check, usually in the form of an IF statement. Approximately

V.!

65 percent of the tests in the test set are Class C tests.

An example of a Class C test is shown in Figure 2-5.

Class C tests contain the same dependencies found in

Class A tests. They also have one additional dependency, the

procedure call FAILED. The FAILED procedure is also found in

the separately compiled REPORT package.

24

LA - - - r

The test objectives of Class C tests will not be

accomplished if the FAILED procedure is removed. The FAILED

procedure is an integral part of the run-time check, and if

it is removed the run-time check will not be performed.

Therefore it is essential that some method be developed for

repackaging the FAILED package.

The method used to repackage Class A tests can also be

used for Class C tests. The only major difference would be

the inclusion of the FAILED procedure. The repackaged tests

would have the form shown in figure 2-6.

procedure sample test is
procedure failed is

begin
--code

end;
procedure test is

begin
-- code

end;
procedure result;I begin

-- code
end;

begin
test;

-- code
result;

end;

Figure 2-6. Restructured Class C test

Class C tests are similar to Class A tests in that they

cannot be used to test an evolving compiler unless all of

the unsupported features are removed from the teats.

25

-- D4AOO2B.ADA

- LARGER LITERALS IN NUMBER DECLARATIONS, BUT WITH RESULTING
- SMALLER VALUE OBTAINED BY SUBTRACTION. THIS TEST LIMITS
- VALUES TO 64 BINARY PLACES.

WITH REPORT;
PROCEDURE D4AOO2B IS
USE REPORT;

X : CONSTANT :a 4123456789012345678 - 4123456789012345679;
Y : CONSTANT := 4 * (10 * 18) - 3999999999999999999;
Z : CONSTANT = (1024 *4 6) - (2 " 60);
D : CONSTANT := 9_223_372_036_854_775_807/20_303_320_287_433;
E : CONSTANT a 36 028 790 976 242_271 REM 17 600_175_361;
F : CONSTANT (-2 '4 51) MOD (- 131_071)T

BEGIN TEST("D4AOO2B","LARG9! INTEGER RANGE (WITH CANCELLATION) IN " &
"NUMBER DECLARATIONS; LONGEST INTEGER IS 64 BITS ");

IF I /= -1 OR Y /= I OR Z /- 0
OR D /- 454 279 OR E /w 1 OR F / -1

THEN FAILED("EIPRESSIONS WITH A LARGE INTEGER RANGE (WITH "&

"CANCELLATION) ARE NOT EXACT ");
END IF;
RESULT;

END D4AOO2B;

Figure 2-7. Class D Test

2.4.3 Class D

Class D capacity tests make up less than one percent of

the tests in the test set. They have the same structure as

the Class C tests, and they contain the same dependencies.

Figure 2-7 shows a typical Class D test. Class D tests

should be repackaged in the same manner as the Class C

tests.

26

-- B32AO6A.ADA

-- CHECK THAT IDENTIFIERS IN SEPARATE OBJECT DECLARATIONS
-- WITH IDENTICAL ARRAYTYPEDEFINITIONS ARE DIFFERENT
-- TYPES.

-- DAT 3/17/81

PROCEDURE B32AO6A IS

A : ARRAY (BOOLEAN) OF BOOLEAN;
B : ARRAY (BOOLEAN) OF BOOLEAN;

BEGIN

A :- B; -- ERROR: TYPE MISMATCH.
A :- (TRUE, TRUE); -- OK.
IF A - B THEN -- ERROR: TYPE MISMATCH.

NULL;
END IF;

END B32AO6A;

Figure 2-8. Class B Test

2.4.4 Class B

As mentioned before, Class B tests are designed to fail

compilation. They make up approximtely 25 percent of the

tests. A typical Class B test is shown in Figure 2-5.

The review of Class B tests did not identify any

language-feature dependencies. Class B tests do not use the

REPORT package. Unlike Class A and Class C tests, the Class

B tests do not require that unsupported features be removed

from tests. Class B tests should still fail in any

implementation.

27

-,--- - . -----

-- LA3004A4.DEP

-- WKB 7/13/81

PACKAGE LA3004A4 IS
END LA3004A4;

WITH P(G;
PACKAGE BODY LA3004A4 IS

I : INTEGER :- 4;

BEGIN

PKG.P (I);

END LA3004A4;

Figure 2-9. Class L Test

2.4.5 Class L

The Class L tests were designed to fail at link time.

Figure 2-8 shows a Class L test. The Class L tests make up

approximately 7 percent of the tests in the test set.

These tests use separately compiled packages and many

of the advanced features of the language. The tests also

rely on other Class L tests to accomplish their objectives.

Because of the relationships that exist between Class L

tests, the changes made in one test may affect several other

tests. It is unlikely that evolving compilers would find

these tests useful. Because of the relationships that exist

between these tests and their limited usefulness during

compiler development, no attempt will be made to repackage

these tests.

28

2.4.6 Class E

There are no examples of class E tests in the version

of the ACVC being studied, therefore no analysis of a Class

E test was made.

2.5 Summary

The analysis of the ACVC test set revealed that several

language-feature dependencies existed in the test set. These

dependencies could not be totally eliminated, but it was

possible to repackage the tests to minimize the impact of

the dependencies. The analysis also revealed that the

elimination of dependencies is not enough to produce a test

set which can be used to test subset compilers.

In addition to repackaging the tests, some method for

removing unsupported language features is needed for Class

A, Class C, and Class D tests. Once these unsupported

features are removed, the Class A, Class C, and Class D

tests could be combined with the Class B tests to make a

viable test set.

29

3. PROJECT DEVELOPMENT

3.1 Introduction

This chapter describes the development of an automated

tool designed to remove unsupported language-features from

tests contained in the ACVC test set. The description begins

with a brief overview of the development process. This is

followed by three sections which describe the development of

the tool's major components. The final section summarizes

the development process.

3.2 Overview

The analysis presented in chapter 2 concluded that

Class A, Class C and Class D tests must be modified before

they can be used to test evolving Ada compilers. The

analysis identified two modifications that must take place,

the elimination of language-feature dependencies and the

removal of langauge features not supported in the compiler

being tested.

The removal of language-feature dependencies was

discussed in chapter 2. It requires the recoding of three

procedures contained in the separately compiled REPORT

package. These recoded procedures must be inserted in the

test programs.

The removal of unsupported features from the test set

is a more difficult task. The fundamental system model of

the process required to accomplish the task is illustrated

in figure 3-1.

30

test program

MODIFY valid test

unsupported TEST PROGRAM -4

language -

features

Figure 3.1 Overview of Test Development Process

S

The modification of the test program shown in figure

3-1 can be broken into three steps (Figure 3-2). The first

step takes the test program as input and produces the

productions and any identifiers, characters, numbers and

strings as output. The second step uses the output from the

first step to build a representation of the test program.

The third step takes the representation and the list of

unsupported features as input, and produces a modified

program as output.

* 31

productions

&

tests identify identifier Build tree manipulate

features> a tree

used & number epresentatio

& char

& string

unsupported

features

Figure 3-2. Internal structure of Modify Test irogram

3.3 Identification of language-features

One of the problems encountered during the analysis

phase was the need to identify the language-features used in

the ACVC tests. Initially the identification was done

manually using the BNF contained in the "Ada Reference

Manual". In this approach, a matrix was produced that

represented the tests contained in the test set and the

language-features used in each of the tests. Once a compiler

was identified for testing, the matrix would be used to

identify tests which contained features not supported by the

compiler. These tests would then be removed from the test

set. This approach was abandoned for two principle reasons:

32

(1) The analysis indicated that tests containing

unsupported language features could still be used if

the unsupported features were removed (Appendix D

contains an example).

(2) The amount of effort required to generate the

matrix manually was unreasonable (Appendix E contains

an example of a manual evaluation of a test).

The results of the first approach made it clear that

any process developed to modify the test set would have to

be completely automated to be of any value. Any process

which required manual evaluation of the tests would take too

much effort.

If the process for modifying tests was to be automated,

the first step would still require the identification of the

language-features used in the test set. Since the manual

evaluation was essent'ially the same process performed by a

parser, the possibility of using an existing parser was

investigated. This investigation led to the selection of

the parser used in a compiler developed by Alan R.

Garlington (Ref 5) for use in the project (Appendix F

describes Garlington's compiler).

The parser used in Garlington's compiler was selected

for two primary reasons. The first reason was that it

parsed the entire Ada language proposed in the 1980 version

~33

of the LRM, which meant it should be capable of parsing all

the tests in the ACVC test set. The second reason was that

it was available in source code. This meant that it would be

possible to modify the output from the parser based on the

needs of the tool. An additional advantage was that the

Garlington compiler was an evolving compiler and a potential

candidate for testing. The Garlington compiler resided on

the DEC-10 computer located at the Air Force Wright Avionics

Laboratory. The decision was made to transport the

Garlington compiler onto the VAX 11-780 at the Air Force

Institute of Technology, where several other ongoing Ada

efforts were residing. Appendix G describes the changes

made to the Garlington compiler in order to get it to

compile on the Vax 11-780.

Once the compiler was transported onto the VAX 11-780,

efforts were then directed toward finding a method for

outputting the language-features identified by the parser.

The Garlington compiler has a switch (traceparse) which

enables the output of productions used by the program, along

with some other information. By modifying some write

statements it was possible to output the valid productions.

The only other output required from the compiler was the

identifiers, characters, strings and numbers identified.

Although it was determined this information could be

extracted from the parser the effort did not go beyond

identifying the form of the output.

34

The format for the output from the parser is as

follows:

production 3

id - aname

string - "abcde"

number - 1234

char - 'a'

The are two reasons the efforts in the area of the

parser were limited. First, changes made in the LRM meant

the BNF used in Garlington's compiler (Appendix C contains

the BNF used in Garlington's compiler) no longer complied

with the Ada standard. Before a finished product could be

developed a new parser would be needed. Second, the primary

purpose of this thesis was to develop methods for

repackaging ACVC tests so they could be used for testing

evolving compilers. Therefore, the primary emphasis was

placed on developing the process for modifying tests rather

than on the modification of an existing parser. As the

language continues to evolve the number of parsers available

should increase.

3.4 Development of a representation

k Before any modifications to a test program can be made

some method of representing the program is required. A

commonly used representation is a parse tree (Figure 3-3

shows the structure of a typical parse tree). The parse tree

structure shown in figure 3-3 was considered, but it was not

35

if-statement

if head

if-condition THEN statementlist

Figure 3-3. Parse Tree Representation

if-

head

cond THEN ----- listI _

Figure 3-4. Representation of a production

used in this project. The structure used is shown in figure

3-4. It was selected because it would allow the use of well

known binary tree traversal routines. It was also selected

because it more accurately portrays the relationship between

siblings, which becomes very important when it is necessary

to remove langauge features from the tree.

36

IL i -... ..i,.

The development of the representation can be broken

into three steps. The first step reads the input file and

creates separate lists to hold productions, identifiers,

characters, strings and numbers. The input type is then

identified and inserted at the head of the appropriate list.

The second step takes the production number from the

head of the production list and builds a representation of

the production. This representation must contain the

production name and the production number. The parent node

is given its actual production Dumber, while its children

are initialized to 0. Figure 3-5 shows what the structure

would look like if the first production number was 3. The

production number is shown in the upper left corner of each

box. Nodes which contain printable tokens are identified

with a 'P'' in the lower right corner of the box.

The final step inserts the representation developed in

the tree. This is accomplished using a post-order traversal

beginning with the right (sibling) branch. The traversal

searches the tree for a production name matching the one to

be inserted. If a match is found the production number is

checked. If the production number is 0 the representation is

inserted, otherwise the search is continued. This check is

necessary since the same production name may appear several

places in the tree. This process is repeated until all

productions have been inserted in the tree. Figure 3-6 shows

what the tree would look like if the second production

number was 4, and it was inserted in the tree.

37

3

Program

compl unit_list

lis

Figure 3-5. Representation of Program ::- compl_unit list

3A

Program

.4
I compl unit-list

compilation-unit

Figure 3-6. Representation after Production 4 is added

38

3.5 Removal of unsupported features.

Once the representation of the test program is built,

the next step is to remove the unsupported features from it.

At first it appeared this could be accomplished by

WA traversing the tree and cutting unsupported productions by

setting pointers to NIL. A close look at sample

representations shoved this was not the case. There were two

types of productions which required special treatment. The

first type was the recursively defined productions (Appendix

I), while the second type was the empty productions

(Appendix H).

The most commonly encountered example of a recursive

production is the statement-list.

* 206. statement-list ::= statement-list statement;

Figure 3-7 shows an example of a tree representation

which contains a statement-list production. If the compiler

being tested does not support the NULL statement, the

pointer to the NULL statement would be set to NIL. The tree

left remaining is not a valid representation of an Ada

program. For example, there could be a label left hanging on

the tree. That means that the pointer labelled D must also

be set to NIL. Another problem is that the comma following

the statement is still left on the tree. Since the statement

has been eliminated, the comma must also be removed. By

setting the pointer labelled E to NIL, the comma would be

39

205

statement list

AC E

s0 tatement list ~~27statement0

B D

29d 213 unlabelle d
2071 0f opt_label list statementl
statement

2101 122 4 simple

label-list statement

2330

label NULL

b0

Figure 3-7. Representation of a recursive production

40

eliminated. While this completes the removal of the

printable tokens which would be illegal in a program, it

does not leave a valid tree. There are still nodes which

should be removed. The statement node no longer belongs in

the tree. To produce a valid representation requires setting

the pointer labelled C (Figure 3-7) to NIL. It also requires

that the pointer labelled A must be set equal to the pointer

labelled B.

A slightly different case arises if the statement

pointed to by the B pointer is not supported. The recursive

traversal used would set the pointer C to NIL before the

pointer to A is set equal to C. Therefore it is necessary to

mark the descendant of any potentially recursive production.

This stops the traversal before valid statements are

eliminatE 1.

The second type of productions encountered can be

classified as empty productions (production 284 is an

example). They are productions which contain no data in

their children. Empty productions occur where the inclusion

of information is optional in a program. The problem is

idnifigthose instances where data is optional.

Production 285 is an example of such a case. Designators may

k be included in programs, but there is no requirement for

them. If they are removed from the program the remaining

program is still valid.

284. designator option :---empty

285. designator-option :-designator

41

2821

subp_ body__dcl

1283 2621 0 285

subp_pecjis-dp-) block body END designator-option

286

*BEGIN designator

id

identifier

Figure 3-8. Representation of a potentially emnpty production

42

2821

subpbodydcl

2831 2621 0O 2841

subp..spec.is...dp- blockbody .*END designator-option

Figure 3-9. Representation after production is eliminated

Figure 3-8 shows an example of a structure using a

production which is potentially empty. If production 285 was

inot supported by the compiler being tested, the only action

required is to remove the data in the representation pointed

to by its child pointer. In the representation shown in

figure 3-8, the designator representation would appear as an

empty box after the appropriate action was taken (figure 3-9

shows what the modified representation would look like). The

43

4

important fact to remember when eliminating the potentially

empty productions is that the impact is localized. No

changes are required at a higher level in the tree than

where the empty node is.

3.5.1 Outputting the modified representation

After the unsupported features have been removed from

the tree, the final step is to output the information

contained in the remaining tree. This tree should represent

a valid Ada program which can be submitted to the evolving

compiler being tested.

Outputting the remaining representation is accomplished

by traversing the tree in an in-order fashion beginning with

the left (son) branch. Nodes in the tree which contain

tokens that should be printed have the boolean variable

PRINTABLE set to true. This was done in the record when the

structure was being built.

3.6 Summary

The development of the project addressed several

factors which must be considered when developing a tool to

remove unsupported language-features. These included the

specification of the input format, the method of

representing the program, the different classes of

productions which can be removed from the tree, and the

method for outputting the modified tree. The next chapter

will describe the tool actually developed and its

capabilities.

44

4. IMPLEMENTATION

4.1 Introduction

Chapter three discussed the development of a tool which

removes unsupported language-features from the test set.

This chapter will discuss the actual implementation of the

tool. It will describe the input required, the data

structure used to represent the productions, the output from

the tool, and the limitations on the use of the tool.

4.2 Input

The fundamental system model illustrated in figure 3-1

requires a list of unsupported language-features and a test

program as input. The list of unsupported language-features

must be created by the user and placed in a file named

BADPRODS. In the current implementation the test program is

submitted to the parser using the following command

sequence:

px work.p < filename-of-test_program

The fundamental system model also shows productions,

characters, strings, identifiers, and numbers as output from

the parser and input to the tool. This input requires some

manual preparation in the current implementation. This is a

result of not having an adequate parser to work with. The

format for the input was shown in chapter three. Productions

are submitted in the order they are output from the parser.

Identifiers, numbers, characters, and strings should be

45

placed in the same order they occurred in the program. Once

this file is prepared it is submitted to the tool using the

following command:

px tree.p < infile

There are two additional input files used by the tool,

which should not require any modifications by the user.

These files are called NULLPRODS and RECURSIVEPRODS. They

contain a list of all productions which can be recursive or

empty (these files can be found in Appendix H and Appendix

I).

4.3 Data Structures

This section will describe the data structure used to

represent the productions contained in the BNF. The data

structure used is shown in figure 4-1. The fields in the

record structure are used as follows.

DATA - contains the name of the product'on.

NUM - contains the production number (Appendix C).

SIBLING - points to a sibling.

SON - points to the scn (child).["i PARENTPTR - points to the parent. This pointer is not

currently being used. It can be connected by modifying

the INSERTPRODUCTION procedure.

PRINTABLE - boolean used to identify the data in a node

that should be output.

NEWLINE - boolean used for formatting purposes.

46

INDENT - boolean used for formatting purposes.

RECDESCENDANT - boolean used to identify a node as the

son of a recursive production.

CUTNODE - boolean used to identify nodes which contain

unsupported language features.

node - record
data : datarray;

num : integer;
sibling : nodeptr;
son : npdeptr;
parentptr : nodeptr;

printable : boolean;
newline : boolean;
indent : boolean;
recdescendant : boolean;
cutnode : boolean;

end;

Figure 4-1. Data structure used to represent productions

The actual representation is generated by means of a

large case statement. The case statement creates nodes

containing the information shown in figure 4-1 for each

production found in the BNF. The DATA field for characters,

strings, numbers, and identifiers is filled by taking the

top element from the corresponding list created by the

parser. The RECDESCENDANT and CUTNODE fields are initialized

false and then updated during the traversal of the tree by

checking the BADPRODS and RECURSIVEPRODS lists.

47

4.4 Output

There are two options available for output. They are

controlled by switches which are initialized in the

INITGLOBALS procedure. The first switch is FULLTREE, which

if set TRUE prints out the entire tree (minus comments).

This option was provided primarily for testing purposes and

would not normally be set TRUE. The second switch is

CUTTREE, which if set TRUE will print out the modified

version of the tree. All output is writte. to a file named

OUTF.

Figures 4-2, 4-3 and 4-4 illustrate how the output from

the tool should change as features a re added to the compiler

being tested. Fig 4-2 shows what a test should look like for

a compiler which does not support arrays and records. Figure

4-3 shows what the new version of the test should look like

after arrays are implemented. Figure 4-4 shows what the

test should look like after records and arrays are both

implemented.

4.5 Limitations

The current implementation has some limitations which

the user should be aware of. Perhaps the most serious is the

limitation imposed by the specific BNF used to develop the

parser. It makes it difficult to identify and eliminate

unsupported data types. For example, if integers were not

supported, the BNF provides no way of determining whether a

type is integer or real. The current BNF uses the following

48

........

productions to represent an integer:

subtype indication ::- name

literal :.number

There are two ways to overcome this problem. The first

is by outputting more detailed information from the symbol

table. The second and probably easier way is to use an

extended form of the I3NF which is more descriptive. The

following extensions were made to the BNF to demonstrate

types could be cut from the representation along with

occurrences of the types in the program body.

subtype indication ::= integer

literal :-integernumber

integer-number ::- number

These extensions would be necessary for other data

types as well. There is one problem not solved by the

extensions, and that is the scope of the variables. This

information would need to be obtained from the symbol table

and stored in the record structure.

The process developed to modify the tests also imposes

some inherent limitationb. Modifications are based on

syntactic issues and do not take into consideration the

semantic rules being tested. No provisions are made in the

test set to account for the semantic rules that an evolving

compiler may not have implemented. An example of this would

49

WITH REPORT;
PROCEDURE A21001A IS

USE REPORT;
BEGINTEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLAREABCDEFGHIjKLM : INTEGER; - USE OF ABCDEFGHIJKLM

NOPQRSTUVWXYZ : INTEGER; - USE OF NOPQRSTUVWXYZ
Z 1234567890 : INTEGER; - USE OF 1234567890
11, 12, 13 : INTEGER;

C1, C2 : STRING (1..6);
C3 : STRING (1..12);

BEGIN
Ii :-2 (3- 1 + 2) I 2 ; 12 :- 8 ; - USES ()*+- / ;
Cl ABCDEF" ; - USE OF "
C2 :- Cl;
C3 : C1 & C2; -USE OF &
12 :- 16#D#; - USE OF #
IF Il > 2 AND

II - 4 AND
Il < 8 THEN -USE OF > <
NULL;

END IF;
END;
RESULT;

END A2100A;

Figure 4-2. Test with records and arrays removed

be the length of identifiers allowed in the compiler being

tested. The language definition allows identifiers to be as

long as the maximum input line length permitted by the

implementation. All characters in the identifier are

significant. If the compiler developer chose to make only

the first eight characters significant, no method is

provided to modify the test set accordingly. It could be

accomplished by generating shorter names for the identifiers

found in the symbol table. This would make comparisons

between the ACVC tests and the modified tests difficult.

50

WITH REPORT;
PROCEDURE A21001A IS
USE REPORT;

BEGIN

TEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLARE

TYPE TABLE IS ARRAY (l..10) OF INTEGER;
A : TABLE :- (2 1 4 1 10-> 1 1 I 3 I 5..9 -> 0)

-USE OF: () I

ABCDEFGHIJKLM : INTEGER; - USE OF ABCDEFGHIJKLM
NOPQRSTUVWXYZ : INTEGER; - USE OF NOPQRSTUVWXYZ
Z 1234567890 : INTEGER; - USE OF 1234567890
Il, 12, 13 : INTEGER;

Cl, C2 : STRING (l..6);
C3 : STRING (1..12);

BEGIN

II:- 2 (3- 1+ 2) 2; 12 :- 8 USES () * +- /
C :-"ABCDEF"; -USE OF "

C2 :- Cl;
C3: Cl & C2; -USE OF &
12 : 16#D#; -USE OF #
13 :- A'LAST; - USE OF
IF II > 2 AND

II - 4 AND
I1 < 8THEN -USEOF >- <
NULL;

END IF;

END;
RESULT;

END A21001A;

Figure 4-3. Test with record removed

51

WITH REPORT;

PROCEDURE A21001A IS
USE REPORT;

BEGIN
TEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLARE
TYPE TABLE IS ARRAY (l..10) OF INTEGER;
A : TABLE :- (2 1 4 110 -> 1 , 1 3 I 5..9 -> 0)

- USE OF : ()
TYPE BUFFER IS

RECORD
LENGTH : INTEGER;
POS : INTEGER;
IMAGE : INTEGER;

FEND RECORD; - USED TO TEST . LATER
Ri: BUFFER:

ABCDEFGHIJKLM INTEGER; - USE OF ABCDEFGHIJKLM
NOPQRSTUVWXYZ : TEGER; - USE OF NOPQRSTUVWXYZ
Z_1234567890 IN ER; - USE 0? _1234567890
Ii, 12, 13 : INTEGER;

Cl, C2 : STRING (i..6);
C3 : STRING (l..12);

BEGIN
Ii :- 2 3- 1 + 2) / 2 ; 12 :- 8 ; -USES () *+- / ;
Cl : "ABCDEF" ; - USE OF
C2 :- Cl;
C3 :-Cl & C2; -USE OF &
12 -16#D#; -USE OF #
13 :- A'LAST; - USE OF
R1.POS :- 3; - USE OF
IF II > 2 AND

I1 - 4 AND
Il <8THEN -USEOF>-<

NULL;
END IF;

END;
RESULT;

END A21001A;

Figure 4-4. Complete test

52

5. RECOMMENDATIONS AND CONCLUSIONS

5.1 Introduction

This chapter describes areas where follow-on efforts

could begin and where deficiencies in the current

implementation exist. It also discusses conclusions reached

about the feasibility of using the modified test set to test

evolving Ada compilers.

5.2 Recommendations

There are several deficiencies in the current

implementation which should be corrected before the tool is

used to produce a valid test set. The most crit'ical

deficiency is the lack of an adequate parser. A parser

* needs to be developed using the current langauge description

and any extensions that will allow a complete identification

of the language-features used in the test set. This parser

could possibly be built using LEX and YACC facilities

provided on the VAX 11-780. The LEX and YACC facilities

could conceivably be used to actually build the tree

representation.

The development of a new parser using a different BNF

- will require a new case statement to generate the data

structures. It is recommended that a program be written to

automatically generate the case statement. This program

should be able to generate the case statement using the BNF

as input.

53

Once the parser is developed some method for keeping

track of the scope of variables is needed. This problem may

require storing symbol table information in the record

structures used to represent the productions.

Another problem which needs to be addressed is the

development of a method for automatically repackaging the

tests. The will require either automating a text editing

process or the use of some type of include command in the

test skeleton developed.

Also, a driver needs to be written which will take the

tests from the test set and feed them into the parser. It

must then take the output from the parser and feed it to the

tool implemented. The output from the tool must be

concatenated with the other modified tests. The driver must

be capable of identifying the test class by reading the test

name. The user may consider doing this prior to submitting

the tests.

Finally, the tool needs to be tested extensively.

Because of the amount of time required to generate test

cases by hand, the tool has not been thoroughly tested.

5.3 Conclusions

" There were a couple of conclusions reached while

working on this project concerning the quality of the ACVC

and the value of a testing capability for evolving

compilers. One conclusion was that the coding standards

used by SofTech were very helpful when it became necessary

54

to analyze the tests. In most cases they used only the

minimum amount of features needed to accomplish the test

objectives. It appeared to be a well organized testing

effort and should serve as an example for others to follow.

Other compiler validation efforts studied were not nearly as

well put together.

The final conclusion reached was that the subset

testing capability will be of value to compiler developers

when it is comoleted. Although it would not represent a

complete testing capability, it is a good start to one. Also

when completely implemented it would represent a very easy

method for generating tests. The manual effort would be

minimal.

55

J..........

BIBLIOGRAPHY

1. Defense Advanced Research Projects Agency. Reference

Manual for the Ada Programming Language Proposed
Standard Document. Washington, D.C. : Department of
Defense, 1980.

2. Defense Advanced Research Projects Agency. Ada

compiler Validation Implementers' Guide. Prepared-y
SofTech, Inc. Waltham, Massachusetts. October 1980.
(AD A091 760).

3. Defense Advanced Research Projects Agency. Ada Compiler

Validation Test Programs. Prepared by SofTech,Inc.
Waltham, Massachusetts. November 1981.

4. Fisher, David A. "DoD's Common Programming Language
Effort," Computer,. 11 (3): 24-33 (March 1978).

5. Garlington, Alan R. Preliminary Design and Imple-
mentation of an Ada Pseudo-Machine. MS Thesis.
Wright-Patterson AFB, Ohio : Air Force Institute of
Technology,. March 1981. (AD A100 796).

6. Goodenough, John B. "The Ada Compiler Validation
Capability," Computer. 14 (6): 57-64 (June 1981).

7. Pressman, Roger S. Software Engineering: A Practi-
tioner's Agproach. New York: McGraw-Hill Book
Company, 1982.

8. Wetherell, Charles and Alfred Shannon. "LR Automatic
Parser Generator and LR (1) Parser." Livermore,
California: Lawrence Livermore Laboratory, 1979.

15

56

APPENDIX A

Evolving Compiler Development

This appendix describes the development of the evolving

compilers the modified test set is targeted to test. It also

provides a description of a typical Ada compiler development

effort.

The compilers the modified test set is targeted to test

are those which are developed as subsets. In other words, a

subset of the langauge is defined and the compiler is built

to compile just the subset. Additions are then made to the

subset to produce a version closer to the complete langauge.

The development process portrayed below is the type the test

set is targeted for.

lexical lexical

parser pvarser

semantic semantic

code subset code subset 2

-finished finished

57

The compiler described below is typical of those targeted to

be tested by the modified test set. It is the Ada/100O

Compiler developed by Science Applications, Inc. This

information was taken from a Science Applications, Inc.

advertisement.

The Ada/lO00 compiler is scheduled to consist of four

releases. The first release will support the following

features:

1. Integer objects and operators

2. Boolean objects and operators

3. Nested procedures and functions

4. Simple user defined types (arrays,

enumerations, simple records)

5. Sequential flow control (loop,

if-then-else, case)

The second release of the Ada/lO00 will provide these

additional features

1. Exception handling

2. Overloading

3. Packages (limited)

4. Separate compilation (limited)

" 5. Tasking (limited)

6. Attributes (limited)

7. Pragmas (limited)

8. Floating point objects and

operators (limited)

58

- - - -- 4_

The third release adds the following features:

1. Variant records

2. Full packages with separate compilation

3. Dynamic arrays (character strings and

variants)

4. Representation specification (length and

enumeration specification).

5. Tasking

6. Code statements

7. Derived types

The last release will be a validated Ada/lO00 compiler.

It will include the following features:

1. Generics

2. Fixed point objects and operators

3. Low-level I/0

As mentioned before, the development of the Ada/1000

compiler is typical of many of the current development

efforts. The most significant aspect of these efforts is

7 that separate compilation is not typically supported until

the second or third release. This means the ACVC test set is

of little use. It also means that the Input/Output package

will most likely be non-standard.

59

APPENDIX B

Rep~ort Package

This appendix contains the report specification and the

report body source listings found in the ACVC test set (Ref

3).

60

REPORT SPECIFICATION

- REPSPEC.ADA
-- THE REPORT PACKAGE PROVIDES THE MECHANISM FOR REPORTING THE PASS/FAIL
- RESULTS OF EXECUTABLE (CLASSES A, C, D, AND E) TESTS.
-- IT ALSO PROVIDES THE MECHANISM FOR GUARANTEEING THAT CERTAIN VALUES
- BECOME DYNAMIC (NOT KNOWN AT COMPILE-TIME).
-- JRK 12/13/79
-- JRK 6/10/80
- JRK 8/6/81

PACKAGE REPORT IS

-- THE REPORT ROUTINES.

PROCEDURE TEST - THIS ROUTINE MUST BE INVOKED AT THE
-- START OF A TEST, BEFORE ANY OF THE
- OTHER REPORT ROUTINES ARE .INVOKED.
- IT SAVES THE TEST NAME AND OUTPUTS THE
- NAME AND DESCRIPTION.

(NAME : STRING(..7); - TEST NAME, E.G., "C23001A".
DESCR : STRING - BRIEF DESCRIPTION OF TEST, E.G.,

-- "UPPER/LOWER CASE EQUIVALENCE IN " &
- "IDENTIFIERS".

PROCEDURE FAILED - OUTPUT A FAILURE MESSAGE. SHOULD BE
- INVOKED SEPARATELY TO REPORT THE
- FAILURE OF EACH SUBTEST WITHIN A TEST.

(DESCR : STRING - BRIEF DESCRIPTION OF WHAT FAILED.
- SHOULD BE PHRASED AS:

"(FAILED BECAUSE) ...REASON...".

PROCEDURE COMMENT - OUTPUT A COMMENT MESSAGE.
(DESCR : STRING - THE MESSAGE.

PROCEDURE RESULT; - THIS ROUTINE MUST BE INVOKED AT THE

- END OF A TEST. IT OUTPUTS A MESSAGE
- INDICATING WHETHER THE TEST AS A
- WHOLE HAS PASSED OR FAILED.

-- THE DYNAMIC VALUE ROUTINES.
- EVEN WITH STATIC ARGUMENTS, THESE FUNCTIONS WILL HAVE DYNAMIC
- RESULTS.

FUNCTION IDENT INT - AN IDENTITY FUNCTION FOR TYPE INTEGER.
(X : INTEGER - THE ARGUMENT.
) RETURN INTEGER; - X.

61

FUNCTION IDENT CHAR - AN IDENTITY FUNCTION FOR TYPE
- CHARACTER.

(X : CHARACTER - THE ARGUMENT.
) RETURN CHARACTER; - X.

FUNCTION IDENT BOOL - AN IDENTITY FUNCTION FOR TYPE BOOLEAN.

(X : BOOLEAN -- THE ARGUMENT.
) RETURN BOOLEAN; - X.

FUNCTION IDENT STR - AN IDENTITY FUNCTION FOR TYPE STRING.
(X : STRING -- THE ARGUMENT.
) RETURN STRING; - X.

FUNCTION EQUAL - A RECURSIVE EQUALITY FUNCTION FOR TYPE
INTEGER.

(X, Y : INTEGER -THE ARGUMENTS.
) RETURN BOOLEAN; - X = Y.

END REPC fr;

62

REPORT BODY

- REPBODY.ADA

- DCB 04/27/80
- JRK 6/10/80
-- JRK 11/12/80
-- JRK 8/6/81

WITH TEXT 10;
PACKAGE BODY REPORT IS

USE TEXTIO;

TYPE STATUS IS (PASS, FAIL);
TEST STATUS : STATUS := FAIL;
TEST NAME : STRING(I..7) := "NONAME";

PROCEDURE PUT MSG (MSG : STRING) IS
---WRITE MESSAGE. LONG MESSAGES ARE FOLDED (AND INDENTED).

MAX LEN : CONSTANT INTEGER RANGE 50..150 :- 72; - MAXIMUM
- OUTPUT LINE LENGTH.

INDENT CONSTANT INTEGER RANGE 0..20 :- 15; - AMOUNT TO
- INDENT CONTINUATION LINES.

I : INTEGER := 0; - CURRENT INDENTATION.
M : INTEGER :- MSG'FIRST; - START OF MESSAGE SLICE.
N : INTEGER; - END OF MESSAGE SLICE.

BEGIN
LOOP

IF I + (MSG'LAST-M+I) > MAXLEN THEN
N :- M + (MAX LEN-I) - 1;
IF MSG(N) /- -' ' THEN
WHILE N >w M AND THEN MSG(N+I) /- ' ' LOOP
N :- N - 1;

END LOOP;
IF N < M THEN
N :- M + (MAXLEN-I) - 1;

END IF;
END IF;

ELSE N :- MSG'LAST;
END IF;
SET COL (I + 1);
PUT_-LINE (MSG(M..N));
I :INDENT;
M :- N + 1;
WHILE M <- MSG'LAST AND THEN MSG(M) - ' ' LOOP
M :- M + 1;

END LOOP;
EXIT WHEN M > MSG'LAST;

END LOOP;
END PUT MSG;

63

[A

LA

PROCEDURE TEST (NAME ; STRING(..7); DESCR : STRING) IS
BEGIN
TEST STATUS :, PASS;
TEST NAME :- NAME;
PUT_1SG ("");
PUT MSG C'- " & TEST NAME & " " & DESCR & ".");

END TEST;

PROCEDURE COMMENT (DFSCR : STRING) IS
BEGIN

PUT MSG(" -"& TEST NAME & ""& DESCR &".");
END COMMENT;

PROCEDURE FAILED (DESCR : STRING) IS
BEGIN
TFST STATUS :- FAIL;
PUT MSG ("& TESTNAME & "" & DESCR &"");

END FAILED;

PROCEDURE RESULT IS
BEGIN

IF TEST STATUS - PASS THEN
PUTMSG ("- " & TEST_NAME &

" PASSED .");
ELSE PUTMSG ("1*** " & TESTNAME &

" FAILED
END IF;
TEST STATUS :, FAIL;
TESTNAME :- "NONAME";

END RfULT;

FUNCTION IDENTINT (X : INTEGER) RETURN INTEGER IS
BEGIN

IF EQUAL (X, X) THEN - ALWAYS EQUAL.
RETURN X; - ALWAYS EXECUTED.

END IF;
RETURN 0; - NEVER EXECUTED.

END IDENTINT;

FUNCTION IDENT CHAR (X : CHARACTER) RETURN CHARACTER IS
BEGIN

IF EQUAL (CHARACTER'POS(X), CHARACTER'POS(X)) THEN- ALWAYS
- EQUAL.

RETURN X; - ALWAYS EXECUTED.
END IF;
T '0'; - NEVER EXECUTED.

END INDENTCHAR;

64

FUNCTION IDENTBOOL (X : BOOLEAN) RETURN BOOLEAN IS
BEGIN

IF EQUAL (BOOLEAN'POS(X), BOOLEAN'POS(X)) THEN -ALWAYS
- EQUAL.

RETURN X; - ALWAYS EXECUTED.
END IF;
RETURN FALSE;

END IDENTBOOL;

FUNCTION IDENTSTR (X : STRING) RETURN STRING IS
BEGIN

IF EQUAL (X'LENGTH, X'LENGTH) THEN - ALWAYS EQUAL.
RETURN X; - ALWAYS EXECUTED.

END IF;
RETURN li

END IDENTSTR;

FUNCTION EQUAL (X, Y : INTEGER) RETURN BOOLEAN IS
RECLIMIT : CONSTANT INTEGER RANGE 1..100 :- 3; - RECURSION

- LIMIT.
Z : BOOLEAN; -- RESULT.

BEGIN
IF X < 0 THEN

IF Y < 0 THEN
Z :- EQUAL (-X, -Y);

ELSE Z :- FALSE;
*END IF;

ELSIF X > RECLIMIT THEN
Z :- EQUAL (REC_LIMIT, Y-X+RECLIMIT);

ELSIF X > 0 THEN
Z := EQUAL (X-1, Y-1);

ELSE Z :- Y -O;
END IF;
RETURN Z;

EXCEPTION
WHEN OTHERS ->

RETURN X = Y;
END EQUAL;

BEGIN
- NULL;

END REPORT;

65

Appendix C

BNF

This appendix contains the BNF used by Garlington's

* compiler. Terminals will be represented by uppercase

letters. Nonterminals will be represented by lower case

letters.

66

1. systemi goal symbol :-END program END

2. programi::

3. program :-compljinit_list

4. compl-unit-list :-compilation_unit

5. compl unit_list :-complunit-list compilation-unit

6. vertical-bar::

7vertical bar::

8. id ::= *IDENTIFIER*

9. char ::- *CHAR*

10. string :-*STRING*

11. number :-*NUMBER*

12. enumeration literal ::- id

13. enumeration-literal t:- char

14. pragma list option -

15. pragma_list-option :-pragma..list

16. pragmajlist :-pragma;

17. pragma list :-pragma_list pragma ;

18. pragma ::- PRAGMA id argument-list-option

19. argument-list-option:-

20. argumentlistoption :-(argument_list

21. argument_list :-argument

22. argument list :-argument_list ,argument

23. argument :-expression

24. argument :-id -> expression

25. declarative-part:-

26. declarative art :-declaration list

27. declaration .list :-declarative-item ;

67

28. declaration_list ::- declarationlist declarative_item

29. declarative-item ::= objectdeclaration

30. declarative-item ::- numberdeclaration

31. declarative-item ::- useclause

32. declarativeitem ::- typedeclaration

33. declarativeitem ::- subtype-declaration

34. declarativeitem ::= exception-declaration

35. declarative-item ::- renamingdeclaration

36. declarative-item ::- pragma

37. declarative-item ::= package declaration

38. declarative item ::= subprogram declaration

39. declarativeitem ::= taskdeclaration

40. declarative_item ::- representationspecification

41. objectdeclaration ::- identifier-list : constant option
subtypeindication initialization-option

42. object declaration ::- id : constantoption
subtypeindication initialization-option

43. object-declaration ::- identifier list : constant option
arraytypedefinition initialization-option

44. object-declaration ::- id : constantoption
arraytype definition initializationoption

45. numberdeclaration ::i identifierlist : CONSTANT
becomes expression

* I . 46pumber declaration :: id : CONSTANT becomes expression

~~4. owes - *-

• I 498 .constant option

49. con Piii ONSTANT

51. initialveutonoption ::= becomes expression

68

52. typedeclaration ::- TYPE id discriminant part option

IS type_definition

53. typedeclaration ::- TYPE id discriminantpartoption

54. discriminant part option ::-

55. discriminant partoption ::- (discriminantlist)

56. discriminant list ::- discriminant declaration

57. discriminantlist ::- discriminant list
discriminantdeclaration

58. discriminantdeclaration ::- identifier list :
subtype_indication initializationoption

59. discriminant declaration ::= id : subtype indication
initialization-option

60. subtypeindication ::= name

61. subtypeindication ::= name constraint

62. constraint := range-constraint

63. constraint ::= accuracyconstraint

64. typedefinition ::- enumerationtype definition

65. typedefinition ::- range_constraint

66. typedefinition ::- accuracyconstraint

67. type_definition ::i arraytype definition

68. type_definition ::- recordtype definition

69. type_definition ::- accesstype definition

70. typedefinition ::- derived type definition

71. type_definition ::- privatetypedefinition

72. subtypedeclaration ::- SUBTYPE id IS subtypeindication

73. derived type_definition ::- NEW subtypeindication

74. rangeconstraint option ::-

75. rangeconstraint option ::- range_constraint

76. rangeconstraint ::- RANGE range

69

77. range ::= simpleexpression .. simpleexpression

78. enumeration typedefinition ::-
(enumerationliterallist

79. enumeration literallist ::- enumerationliteral

80. enumerationliterallist ::- enumeration literallist

enumeration-literal

81. accuracyconstraint ::= DIGITS simple-expression
rangeconstraintoption

82. accuracy constraint :z= DELTA simple expression
range constraint option

83. arraytypedefinition ::= ARRAY (indexlist) OF
subtypeindication

84. index-list ::- index

85. indexlist ::- indexlist , index

86. index ::- name RANGE <>

87. index ::- fulldiscrete_range

88. index ::- name

89. discrete-range ::- name range constraint option

90. discrete_range ::- range

91. fulldiscreterange ::= name rangeconstraint

92. fulldiscreterange ::- range

93. componentassociation ::- choice-list => expression

94. component-association ::- name accuracy_constraint

95. choice_list ::- choice

96. choicelist ::- choicelist vertical bar choice

97. choice ::- simple-expression

98. choice ::= full discrete_range

99. choice ::= OTHERS

100. recordtype-definition ::- RECORD componentlist
END RECORD

70

101. componentlist ::=

102. component list ::f compondecllist variant partoption

103. component-list ::- variant-part

104. componentlist ::- NULL ;

105. compondecllist ::- compon_decl

106. compondecllist ::= compon_decllist compondecl

107. compon decl ::f identifierlist : subtype indication
initializationoption

108. compondecl ::- id : subtype-indication
initialization_option

109. compon-decl ::= identifierlist : array typedefinition
initializationoption

110. compondecl ::= id : arraytype_definition
1 viinitialization option

111. variantpart option ::=

112. variant part option ::- variantpart

113. variant part ::- CASE name IS variant list option
END CASE

114. variant list option ::-

115. variantlist-option :: variantlist

116. variant list ::= variant

117. variant-list ::- variant-list variant

118. variant ::- WHEN choicelist -> component_list

119. accesstypedefinition ::= ACCESS subtype indication

120. idoption ::-

121. idoption ::a id

122. identifierlist ::- id , id

123. identifierlist ::- identifier_list , id

124. namelist ::= name

125. namelist ::- name-list , name

71

126. name ::= id

127. name ::= indexedcomponent

128. name ::- selected-component

129. name ::= attribute

130. indexedcomponent ::= name generalized expressionlist

131. indexedcomponent ::f name ()

132. selected-component :: name . id

133. selectedcomponent ::= name . ALL

134. selected-component ::= name . string

135. attribute ::= name ' id

136. attribute ::f name ' DIGITS

137. attribute ::= name ' DELTA

138. attribute ::= name ' RANGE

139. subprogramname ::- name

140. subprogram name ::= string

141. literal ::- string

142. literal ::= number

143. literal ::- char

144. literal ::- NULL

145. expressionoption ::-

146. expressionoption ::- expression

.! 147. generalizedexpressionlist ::- gel-head)
148. gel head ::- lparen generalized expression

149. gelhead ::- gelhead , generalizedexpression

150. 1_paren ::- (

151. generalizedexpression ::- expression

72

152. generalizedexpression ::- simpleexpression.
simple expression

153. generalizedexpression ::= component_association

154. generalizedexpression ::= name range-constraint

155. expression ::= and expression

156. expression ::= orexpression

157. expression ::= xor expression

158. expression ::= and then expression

159. expression ::= or_else_expression

160. expression ::= relation

161. and expression ::- relation AND relation

162. and expression ::= andexpression AND relation

163. or_expression ::= relation OR relation

164. orexpression ::- or expression OR relation

165. xor_expression ::- relation XOR relation

166. xorexpression ::- xor_expression XOR relation

167. and thenexpression ::- relation andthen relation

168. andthenexpression ::- andthenexpression orelse
relation

169. and-then ::- AND THEN

170. orelseexpression ::- relation orelse relation

171. orelseexpression ::- orelse_expression orelse
relation

172. or else ::- OR ELSE
I

173. relation ::= simpleexpression

174. relation ::- simpleexpression - simpleexpression

175. relation ::- simpleexpression /- simple-expression

176. relation ::- simpleexpression < simple-expression

177. relation ::- simpleexpression <- simple-expression

73

178. relation : simpleexpression > simple expression

179. relation ::= simpleexpression >= simpleexpression

180. relation ::= simpleexpression IN subtypeindication

181. relation ::= simpleexpression IN range

182. relation ::= simple_.e.xpression NOT IN
suttype_indication

183. relation ::= simpleexpression NOT IN range

184. unop_term ::= + term

185. unopterm ::= - term

186. unop-term ::= NOT term

187. simpleexpression ::= simpleexpression + term

188. simpleexpression ::= simpleexpression - term

189. simpleexpression simpleexpression & term

190. simpleexpression ::= term

191. simpleexpression ::= unop-term

192. term ::= term * factor

193. term ::= term / factor

194. term ::- term MOD factor

195. term ::= term REM factor

196. term ::= factor

197. factor ::= primary

198. factor ::= primary ** primary

199. primary ::- literal

200. primary ::= name

201. primary ::= allocator

202. primary ::- name ' generalizedexpression list

203. primary ::= generalizedexpressionlist

74

204. allocator ::= NEW name

205. statement-list ::= statement

206. statementlist ::= statementlist statement

2C7. statement ::= opt_labellist unlabelledstatement

208. statement ::= pragma

209. optlabel_list ::=

210. opt labellist ::= labellist

211. label-list ::= label

212. labellist ::= labellist label

213. unlabelledstatement ::= simple-statement

214. unlabelledstatement ::= compoundstatement

215. simple_statement ::= assignment-statement

216. simplestatement ::= name

217. simplestatement ::= exitstatement

218. simplestatement ::= returnstatement

219. simple_statement ::- goto_statement

220. simplestatement ::= raisestatement

221. simplestatement ::= abortstatement

222. simplestatement ::- delaystatement

223. simplestatement ::= name ' generalized expressionlist

224. simplestatement ::= NULL

225. compoundstatement ::- if_statement END IF

226. compoundstatement ::- case_statement END CASE

227. compoundstatement ::- accept-statement

228. compoundstatement ::- selectstatement END SELECT

229. compoundstatement ::- loopstatement END LOOP
idoption

230. compoundstatement ::- block END idoption

75

-i - -.

231. tagoption ::=

232. tagoption ::= id

233. label ::= << id >>

234. assignmentstatement ::= name becomes expression

235. if statement ::= if head

236. if-statement ::= if headelse statementlist

237. if head ;:= if-condition THEN statementlist

238. if head ::= ifhead elsifcondition THEN statementlist

239. if condition ::= IF condition

240. if headelsifcondition ::= ifhead-elsif condition

241. if headelsif ifhead ELSIF

242. if head else ::= if-head ELSE

243. condition ::= expression

244. case-statement ::= caseheader alternativelist_option

245. caseheader ::= CASE expression IS

246. alternative_list option

247. alternativelist-option ::= alternativelist

248. alternative-list ::= alternative

249. alternativelist ::= alternativelist alternative

250. alternative ::= pre-alternative statement_list

251. pre_alternative ::= WHEN choicelist ->

252. loopstatement ::- tagoption loopintro statementlist

253. loopintro ::= LOOP

254. loop intro ::- WHILE condition LOOP

255. loopintro ::- FOR id IN reverseoption
discreterange LOOP

256. reverseoption ::-

76

257. reverse_option ::= REVERSE

258. block ::= tag option declare part option block_body

259. declarepartoption ::=

260. declarepartoption ::= declarekw declarative_part

261. declare kw ::= DECLARE

262. block_body ::= BEGIN statementlist exception_option

263. exceptionoption ::f

264. exceptionoption ::f EXCEPTION
exception_handlerlistoption

265. exitstatement ::= EXIT id option when-condition_option

266. whencondition_option ::=

267. whencondition_option ::- WHEN condition

268. returnstatement ::= RETURN expressionoption

269. goto_statement ::= GOTO name

270. subprogramdeclaration ::f subpspec

271. subprogramdeclaration ::= geninstsubp

272. subprogramdeclaration ::= subpspec IS SEPARATE

273. subprogramdeclaration ::= subpbodydcl

274. gen_inst_subp ::- subpspec is NEW name

275. subpspec ::= subp-hdr

276. subpspec ::- genericpart subp_hdr

277. subprogramnature ::- FUNCTION

278. subprogramnature ::= PROCEDURE

279. subphdr ::- subprognature_desig formal-part-option
returnoption

280. subprog._naturedesig ::- subprogramnature designator

281. subpspecis ::- subpspec IS

282. subpbody_dcl ::- subpspecis dp blockbody END
designatoroption

77

283. subp..spec...isdp :=subpspec_is declarative_part

284. designator option::

285. designator option :=designator

286. designator :=id

287. designator :=string

288. return option:=

289. return option :=RETURN subtype_indication

290. formal part option ::=

291. formal partoption ::= (parameter-declaration-list)

292. parameter-declaration-list :=parameter-declaration

293. parameter-declaration-list::
parameter-declaration-list :parameter-declaration

294. parameter-declaration ::= identifier list :mode option
subtype-indication initia;lization option

*295. parameter-declaration ::= id :mode option
subtype-indication initialization-option

* 296. mode option::

297. mode option :=IN

298. mode option :-OUT

299. mode option :-IN OUT

300. package declaration :-pkg spec_dcl

301. package declaration :=geninstpkg

302. package declaration :=PACKAGE BODY id IS SEPARATE

*303. package declaration :-pkgbodydcl

304. gen_inst_pkg :-pkg spec_hdr IS NEW name

305. pkg spec dcl :-pkg spec_hdr_isdp
private-decl part option END id_option

306. pkg~spechdr-is-dp ::- pkgspec_hdr_is declarative part

307. pkg~spechdr :-pkg spec_hdr IS

78

308. pkg spec hdr :=generic part pkgheader

309. pkg spec hdr :=pkg header

310. pkg_header ::- PACKAGE id

311. pkg body dcl ::- pkg body_is-stms END idoption

312. pkg body is-stms :=pkgbodyisdp block-body

313. pkg body is-stms :-pkg_bodyisdp

314. pkgbodyisdp ::- pkgbodyjis declarative.part

315. pkgbodyjis ::- PACKAGE BODY id IS

316. private-deci part option:=

317. private-declpartoption :-PRIVATE declarative part

318. private type definition :=PRIVATE

319. private_type definition :=LIMITED PRIVATE

320. use-clause ::- USE name-list

321. renaming declaration :=id :constant option name
RENAMES name

322. renamingdeclaration :=id :EXCEPTION RENAMES name

323. renaming declaration :=subphdr RENAMES
sub prog ram name

*324. renaming declaration :-PACKAGE id RENAMES name

325. renaming declairation :-TASK opttype_kw id
RENAMES name

326. task-header ::- TASK opttypekw id

327. task-declaration ::- task-header opt...task_is

328. task-declaration :-task-.body

329. task-declaration :-task..body...id-is SEPARATE

330. task-body ::- task-.body-.id-is-dp block-.body
END id-option

331. task.body..id_is_dp ::- task_bodyjid~is declarativepart

332. task bodyjid is :-TASK BODY id IS

79

333. opt typekw:=

334. opt type kw :=TYPE

335. opt_task_is:=

336. opt_task-is :=IS optentries rep spec list option

END idoption

337. rep spec list option::

338. rep spec list option :=repspec_list

339. rep spec list :: '. 1resentation..specification

340. rep spec list :=repspec_list
representa tion speci fica tion ;

341. opt_entries:=

342. opt_entries :=entry..dcl_list

.343. entry dcl list :-entry_declaration

344. entry dcl list :=entry_dcl-list entry-declaration

345. synchronization-statement :-accept-..statement

346. synchronization -statement :-delaystatement

347. entry declaration :-ENTRY id (discrete-range)
formal part option

348. entry declaration :=ENTRY id formalpartoption

349. accepthdr :=ACCEPT id formalpart.option

350. accept hdr :-ACCEPT paren-name formalpart..option

351. acceptstatement ::a accept..hdr

352. acceptstatement ::a accept..hdr-do statement_list ENV'
-i d-oPt ion

353. accept hdr-do ::- accept_hdr DO

354. paren-name ::- id Cexpression)

355. delay statement :-DELAY aimpleexpression

356. select-statement :-select-kwe select-.body

357. select-statement :-select-kw conditional_entiyerall

80

358. select statement ::f selectkw timed_entry call

359. conditional entrycall ::- entry list else kw
statement-list

360. elsekw ::- ELSE

361. timed entry call ::= entryjlist or del stmt_listoption

362. entry list or del ::- entry list OR delay statement

363. entry list ::= entry call statement stmt list option

364. entry callstatement ::= name

365. stmt list option ::-

366. stmt list option ::- statement-list

367. select kw ::= SELECT

368. select-body ::- select alternativelist else kw
statementlist

369. selectbody ::- selectalternative list

370. select alternative list ::= select-alternative

371. selectalternativelist ::w selectalternative list OR
select _alternative

372. selectaltfront ::- conditionoption
synchronization-option

373. selectalternative ::- select altfront statementlist

374. select-alternative ::- selectaltfront

375. selectalternative ::- conditionoption TERMINATE

376. conditionoption ::f

377. condition_option ::n WHEN condition =>

378. abortstatement ::- ABORT namelist

379. compunithdr ::- pragma list option context-list option

380. compilation unit ::a comp unithdr 1_unit

381. compilation-unit ::u comp unithdr SEPARATE (
designatordot name) s_unit

81

38.dsgaoIotnae dsgao

382. desi gnat ordot-name :=designator~dtnm

designator

384. s-unit :=c-body

385. s-unit :=taskbody

386. c-body :=subpbody-dcl

387. c-body :=pkg body dcl

388. 1_unit :=c-body

389. 1_unit :-subpspec.

390, 1_unit :-pkg spec_dcl

391. 1_unit :-genjinstpkg

392. 1_un~t :-geninstsubp

393. context-list-option :

394. context-listoption :-context-list

395. context-list :-context

396. context-list :-context-list context

397. context :-with-clause

398. context :-with-clause use-clause

399. with-clause ::- WITH name-list

400. exceptiondeclaration i:: identifier-list :EXCEPTION

401. exception declaration ::- id :EXCEPTION

402. exception handler list option::

403. exception handler list option::
exception-handler list

404. exception handler-list ::- exception_handler

405. exceptionhandler-list ::- exception_handlerlist
exceptionhandler

406. exception handler u-ehprestm statement-list

82

407. eh_prestm ::- WHEN exception-choice-list =>

408. exception choice-list :=exception_choice

409. exception choice-list :=exception-choice-list
vertical-bar exception-choice

410. exception choice :=name

411. exception-choice :=OTHERS

412. raise-statement :=RAISE name

413. raise-statement :=RAISE

414. generic formal-list-option::

415. generic-formal-list-option :=generic-formal-list

416. generic part ::- GENERIC generic-formal_list_option

417. generic-formal-list :=generic-formal

418. generic-formal-list :=generic formal list

generic formal-

419. generic-formal :=parameter-declaration

*420. generic-formal :-TYPE id discriminant~partoption
IS generic type definition

*421. generic-formal :=WITH subphdr

422. generic -formal :=WITH subpjidr IS subprogram_name

423. generic-formal ::m WITH subphdr IS <>

424. generic type definition :-(0>)

425. generic type definition :=RANGE <>

426. generic type definition :-DELTA <>

427. generic type definition :-DIGITS 0>

428. generic typedefinition :: array...typedefinition

429. generic typedefinition :: access..type...definition

430. generic type definition :-private~typedefinition

431. representationspecification leghs:-o~eu~e

83

432. representation specification::
recor dtype representation

433. representation specification ::- address specification

434. length spec_or_enumrep ::- FOR name USE expression

435. record type representation ::- for_name_use_record

alignment Iclause-option comp name_loc-list-option

436. for-name-use-record ::= FOR name USE RECORD

437. alignment clause_option :

438. alignment clause_option :=AT MOD simpleexpression

439. coup name ic-list..ption :

440. comp. name 1cc-listjoption :=compname icc_list

441. comp name 1cc-list :-compjiame-loc

442. comp name ic-list :-comp..name_oc-list
comp nameloc;

443. compnamejloc ::- name AT simple-..expression
rang econ strain t

444. address specification :=FOR name USE AT
simple expression

84

Appendix D

Removal of Language-features from Valid Tests

The purpose of this appendix is to show that the tests

found in the ACVC can still be useful after

language-features have been removed from them. It provides

an example of a Class A test and shows what it would look

like after some features have been removed. Figure D-1 shows

the test to be evaluated.

The first case studied is the impact the removal of

record structures would have on the test. Figure D-2

illustrates what the test would look like after all uses of

the record structure were removed. The only test objective

not accomplished by the test is testing the acceptance of

'.'. The remainder of the test Jis still valid.

If the array is added to the list of unsupported

features the resulting test would look like the test shown

in figure D-3. The use of ':', ?(1, ' ', 1' ' and '''

would no longer be tested, but the remaining test would be

valid.

This process can continue until all that remains is the

procedure calls to TEST and RESULT, provided they were

recoded using the supported language features. When the

string type is no longer supported the TEST procedure call

would be an illegal construct.

85

WITH REPORT;
PROCEDURE A21C01A IS

USE REPORT;

BEGIN
TEST ("A21OOA", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLARE

TYPE TABLE IS ARRAY (1..10) OF INTEGER;
A : TABLE := (2 1 4 10 >1 , 1 1 3 1 5..9> 0)

-USE OF: () I,
TYPE BUFFER IS

RECORD
LENGTH : INTEGER;
POS : INTEGER;
IMAGE : INTEGER;

END RECORD; - USED TO TEST LATER
RI : BUFFER;

ABCDEFGHIJKLM : INTEGER; - USE OF ABCDEFGHIJKLM
NOPQRSTUVWXYZ : INTEGER; - USE OF NOPQRSTUVWXYZ
Z 1234567890 : INTEGER; - USE OF 1234567890
IT, 12, 13 : INTEGER;

Cl, C2 : STRING (1..6);
C3 : STRING (l..12);

BEGIN
Il :- 2 * (3- 1 + 2) / 2 ; 12 :- 8 ; -- USES () * +- I
C1 :- "ABCDEF" ; - USE OF"
C2 :- Cl;
C3 :-Ci & C2 -USE OF &
12 :- 16#D#; - USE OF #
13 :- A'LAST; - USE OF
R1.POS :- 3; - USE OF
IF Ii > 2 AND

II - 4 AND
II < 8 THEN -USE OF > -<
NULL;

END IF;

END;
RESULT;

END A21OO1A;

Figure D-i. Class A Test

86

. L _ ,m f : I - - .. .- . . . - -

WITH REPORT;

PROCEDURE A21COlA IS
USE REPORT;

BEGIN

TEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLARE

TYPE TABLE IS ARRAY (1..10) OF INTEGER;
A : TABLE := (2 41 1 -> 1 1 3 1 5..9 => 0)

- USE OF : () I ,

ABCDEFGHIJKLM : INTEGER; - USE OF ABCDEFGHIJKLM
NOPQRSTUVWXYZ : INTEGER; - USE OF NOPQRSTUVWXYZ
Z_1234567890 : INTEGER; - USE OF 1234567890
Ii, 12, 13 : INTEGER;

Cl, C2 : STRING (1..6);

C3 : STRING (1..12);

BEGIN

Ii:- 2* (3-1+2) / 2; 12:- 8.; USES () * +- /I;
Cl :- "ABCDEF" ; - USE OF
C2 :- Cl;
C3 - C1& C2 , -USE OF &
12 :-16#D#; -USE OF #
13 :-A'LAST; -USE OF'
IF II > 2 AND

I - 4 AND
Ii < 8 TBEN -USE OF > - <
NULL;

END IF;

END;
RESULT;

END A21001A;

Figure D-2. Class A Test with record removed

87

I i ,,i - -. o'.

WITH REPORT;
PROCEDURE A21001A IS
USE REPORT;

BEGIN
TESf ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED")

DECLARE
ABCDEFGnIJKLM : INTEGER; -- USE OF ABCDEFGHIJKLM
NOPQRSTUVWXYZ : INTEGER; - USE OF NOPQRSTUVWXYZ
Z 1234567890 : INTEGER; -- USE OF 123L567890
Ii, 12, 13 : INTEGER;
C1, C2 : STRING (1..6);
C3 STRING (1..12);

BEGIN
Ii := 2 * (3- 1 + 2) / 2 ; 12 := 8 ; - USES () * +- I
Cl := "ABCDEF" - USE OF
C2 := Cl;
C3 :=C1 & C2 ; -USE OF &
12 := 16#D#; - USE OF #
IF II > 2 AND

Ii - 4 AND
II < 8 THFN -USE OF > =<
NULL;

END IF;
END;
RESULT;

END A21001A;

Figure D-3. Class A Test with records and arrays removed

Class A tests in most cases still accomplish many of

the test objectives even when language-features are removed.

In most cases, Class C and Class D tests do not accomplish

their test objectives when features are removed. The prime

purpose for removing features from Class C and Class D tests

is so they will not fail compilation. If they failed

compilation, they would require manual analysis to determine

they failed because they used unsupported features.

88

/AD-A 27 333 PRELIMINAR DESIG AND N IMPLEMENTATION 0F A METHOD FOR
VAL DA T NO EVOLVNG ADA COMP IERS(U A I A FNORCE INS 0F
TECH WR 014T PATTER SoN AFN OH SCHOD 0 FENSI

UNCLASFIED E D MILER M AR 83 AFIT/GS/MA/83M _1 N/ 92

'El.""mmmmm

1 .0 w IL-61111&362
Am1 1.12

111W1

MICROCOPY RESOLUTION TEST CHART
16ATIONAL. BUREAU OF STANDARDS 1963-A

\4

4

APPENDIX E

Manual Evaluation of Tests

This appendix was included to show the manual effort required to

analyze tests contained in the ACVC. A small segment of the test shown

in figure 2-3 is analyzed using the BNF contained in the LRM (Ref 1).

The segment analyzed is shown in figure E-1.

WITH REPORT;
PROCEDURE A21001A IS
USE REPORT;

BEGIN
TEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLARE

' TYPE TABLE IS ARRAY (l..10) OF INTEGER;A : TABLE :- (2 I 4 I 10 > 1 , 1 I 3 1 5..9=> 0) ;

- USE OF : () I

END;

-I
Figure E-1. Test Segment Analyzed Manually

In the following analysis, the code being analyzed is found between

the asterisks.

89

TEST A21001A.ADA

*WITH REORT;

compilation ::- compilation.unit

compilationunit ::u context-specification
subprogram body

contextspecification ::a withclause

with clause ::- WITH unit name;

name ::- identifier

identifier :- letter {letter..or..digit}

letter ::= upper case letter

................... PROCEDURE A21001A IS ------------------

subprograumbody ::- subprogramspecification IS
declarativejart

BEGIN
sequence ofstatements

END [designator];

subprogra specification ::- PROCEDTi RE identifier

identifier ::- letter '(etter ordigit

letter ::= uppercase letter

uN:uu:.. rN ::uuu:==uN USEREPORT --------- N hu:u:O:uNEN

declarative part :: declarative.item

declarative item :- use clause

use clause ::- USE package name

J name ::= identifier

identifier ::- letter etter or.dii

letter :- uppercase letter

90

.... ...- , ,,-|[.... .. .

* . *N BEGI --------- N**u::

sequence of-statements ::= statement statement>

-------- -----: x
TEST("A210OIA","CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

--- ET NNN.------------NNN-M

statement ::- simple statement

simplejstatement ::= procedure call

procedure call ::- procedure name [actualparameter..part];

name ::- identifier

identifier ::- letter (letteror digit)

letter ::- uppercase letter

actualparameterpart ::w (parameter association
,paranter.association))

*N~::i N u~u~u~u:"A210~.&" :u:::u u:

parameter association ::- actualparameter

actualjarameter ::= expression

expression ::- relation

* relation ::w simpleexpression

simple expression ::- term

term ::- factor

factor ::- priaary

-I primry 22- literal

Id .. literal ::- character string

characterstring :. "fcharacte, "

91
t n

$ "CHECK THAT BASIC CHARACTER SET ISACETD****

parameter association ::= actual,_parinmeter

actual~parameter ::= expression

expression ::m relation

relation %:- simple expressionl

simple expression ::a term

term ::- factor

factor :-primary

primary :-literal

literal : :a character string

character string :- {hracter}

NNNN DECLARE NN N NN - ---

statement *:2- compound statement

compound statement : :w block

block ::= DCLARE
-declarativejat

BEGIN
sequenceof statements

END (block 'identifier]

declarative part :a m declarative..tem}

---- : *:NuNNu:NN TYPE TAL IS u:u::uU

declarativetitem ::= declaration

declaration : := typedfeclaration

typedfeclaration s:2 TYPE identifier IS typedefinition;

identifier ::- letter {etter.pr..iuit}

letter ::a upper.caseeletter

92

***=*==========NARRAY (1..10) OF UITEGER O'N*N*-=:"

type jefinition ::- arraytype definition

3 arraytypedefinition ::= ARRAY index constraint OF
component subtype_.ndication

index constraint a :- (discrete range)

discrete range ::= range

range ::- simple expression..simple expression

s9!pleexpression ::- term

tern ::- factor

factor ::- primary

(I primary : literal

literal - numeric literal

numeric literal a- decimal number

deciml number i - integer

Integer ::- digit {digit}

:::u:u:::::uu::::::u::::::: 10 uu:Imuuuuuu:uuuuiuuuuuuu::::

simple expression :- term

tern "* factor

factor ::a primary

primary s:- literal

literal ::= numeric literal

numric~literal a :: decial eber

decimal number : := integer

(integer -:: digit -- igit}

93

--- ---- M O N M l N E E * * N N * N N N N N *

- subtype..Indication ::a type park

type park :: yenn

name ::= identifier

identifier ::- letter {letter or digit)

letter ::- upper_caseletter

~"'~ A : TABLE :- (2 4 I 10 > 1, 1 I 3 I 5..9 -> 0); *'*

declarative item ":= declaration

declaration ::= object declaration

object declaration ::m identifier list:
subtype ndication [:- expression]

-----uu u.u....: uu.-------- A- n::
.............................NNN A " N N- - --- = ' ' ' - '"---

(identfier list ::- identifier

identifier ::= letter {itter...r...digit4

letter ::a uppercaselatter

:::::::::::::::::::::::::: TABLE ::..uNu:uuuuuNnM::::::::

subtypeindication ::- type park

type Wrk ::= typename

name ::= identifier

identifier : :- letter Qetter.ordigit

S -j letter ::- upperjcaeletter

--uu:uuuu:NNNNu (214110 -> 1, 11315..9 -> 0) ::::0)umuuiniu"

..Je expression ::- relation

relation : :- simpleexpression

simpleexpreseion : 2- term

term :to factor

9'
..._._--__-_.___..__''" ,.-',',- " '-.

factor :-primary

primary ::= (expression)

expression ::- relation

relation oo:- simple expression

simple expression ::= term

term ::- factor

factor z:- primary

primary ::- aggregate

aggregate :%:- (componentaseociation {:component association)

OZNN NNNNN-ON-NNNNNNNN 2 14 110 =>i I NONNNNNNNOMONNNINN

component association ::- [choice {Ichoice} -i>] expression

uu ::u:NNNNNNNNNNN 2 NNNNN

choice : := simple exprqssion

simple expression ::a term

term ::= factor

factor :-primary

primary :-literal

literal :-numeric literal

numeric literal ::- decia umber

decimal number ::iner

choice : so simple~epreaeion

simple exprssion ::- term

(term ::a factor

factor :so primary

95

primary ::= literal

literal ::= numeric literal

numericliteral :: decimalnumber

decimal number ::integer [.nteger] [exponent]

j integer :-digit [underacore] digit

choice ::- simple expression

simple expression ::- term

term ::- factor

factor ::- primary

primary ::- literal

literal ::= numeric.literal

nueric.iteral - decimal-number

decimal.puuber : : integer

integer ::- digit (digit)

expression ::- relation

relation ::-a simple expression

simple expression ::= term

- term ::= factor

factor ::- primary

primary ::=literal

literal ::= numericliteral

nmwerilit4era : :- decimal.nber

decimlnumber::- integer

integer - digit {disit

96

*******'********1 I31 5..9 >0

component-association ;:= [choice chic >] expression
e)

choice ::= simple expression

simple expression ::- term

term ::- factor

factor ::a primary

primary :-literal

factor :mprimary

primary : -literal

literal :-numeric literal

numeric literal : -decimal number

decimal number :-integer

* integer ::= digit { igit}

choice ::= aimplqexpression

simple expreasion ::= term

term :-factor

factor ::= primary

primary ::a literal

numeric~literal : -decimal rnumber

decimal number :-integer

integer ::in digit (digit)

97

choice :*a- discreterange

discrete.range ::- range

range : simpleexpression..simpleexpression

simple expression ::- term

term ::- factor

factor 3:- primary

primary ::- literal

numericliteral : decimal.number

decimalnumber := integer

integer ::= digit Cigitlj

-- - - - -N uNNN NN N 9 ------------------

simple_expression ::= term

term ::- factor

factor :-- primary

primary : literal

nuericliteral ::m decimal number

decimalnumber ::= integer

integer ::- digit Cdigit}

expression ." relation

I ~ relation :s- siampleexpresaion

saipleexpresion ::- term

term ::- factor

factor s- primary

96

.- ,. .. , ,. -. & .: 4 .. " . - - - - * -.-.. _ . _ -

primary ::-literal

literal ::= numeric literal

numeric-literal :-decimal number

decimal number :-integer

integer : -digit-A~igiti

* *C

APPENDIX F

Description of the Garlington Compiler

This appendix describes the Ada compiler used to parse

the test programs. It was developed by Alan Garlington as

part of his thesis effort in the design and implementation

of an Ada pseudo-machine (Ref 5).

The portion of the user's guide which describes the

features implemented is reproduced here for convenience.

1. Integer Variables. Number declarations and variable
initializations are not implemented.

1Package declarations.

3. Procedures and functions with parameters (mode types
may be specified).

4. Task declarations.

5. Selected components may be used to open visibility
to objects that are within scope but which are not
directly visible.

6. Most integer arithmetic or Boolean expressions may
be used including those using short circuit conditions.
However, the following list of operators has not been
implemented: REM, **, &, IN.

7. The following statements may be used:

a. Assignment
b. Procedure, function or entry calls
c. Exit
d. Return
e. IF THEN ELSIF ELSE
f. Accept
g. Loop. (except FOR loop)

100

- -*--';-----7

The aspect of the Garlington compiler which had the

most significant influence on this project was the parser.

The parser used by Garlington was a LR (1) parsing

automaton. It is a bottom-up, finite-state machine whoseVoperations are directed by a set of language-specific

tables. These tables were generated using the LR package

from Lawrence Livermore Laboratory (Ref 8). The parser ued

was designed to parse the full Ada language as described in

the 1980 version of the "Reference Manual for the Ada

Programming Language".

101

-77z,

APPENDIX G

Modifications to the Garlington Compiler

This appendix describes the changes made in the

Garlington compiler in order to get it to compile on the VAX

11-780. There were four primary changes made to the

Garlington compiler.

The first change required was a case conversion. The

version taken off the DEC-10 was written in all upper-case

letters. To compile on the VAX, all reserved words must be

in lower-case. The program was run through a case conversion

routine to change it to lower case.

The second change removed all line numbers from the

program. This was accomplished using a prograq to filter out

line numbers.

The third change removed all CYBER and DEC-10 specific

routines. This included the date and time facilities used by

the compiler.

The final and probably most serious modification was

related to the structure of the case statements used in the

program. The version of Pascal implemented on the DEC-10

supported the use an OTHERS form to catch anything that fell

through the case statement. The version implemented on the

VAX does not support the OTHERS statement. This required

inserting a range check before each case statement.

102

IAJ~~

APPENDIX H

Empty Productions

This appendix contains a list of all the empty and

potentially empty productions found in the BNF contained in

Appendix C. These productions are listed by their

corresponding number.

2 54 120 259 296 341

3 55 121 260 297 342

14 74 145 263 298 365

15 75 146 264 299 366

19 101 209 266 316

20 102 210 267 317

25 103 231 284 333

26 104 232 285 334

48 il1 246 288 335

49 112 247 289 336

50 114 256 290 337

51 115 257 291 338

103

APPENDIX I

Recursive Productions

This appendix contains a list of all the recursive and

potentially recursive productions found in the BNF contained

in Appendix C. These productions are listed by their

corresponding number.

4 84 148 188 292 404

5 85 149 189 293 405

16 95 161 192 339 408

17 96 162 193 340 409

21 105 163 194 343 417

22 106 164 195 344 418

27 116 165 205 370 441

28 117 166 206 371 442

56 122 167 211 382

57 123 168 212 383

79 124 170 248 395

80 125 171 249 396

104

.. ._
_.

..
__ _.._

...

VITA

Edward D. Miller, Jr. was born on 1 May 1954 in

Middlesboro, Kentucky. He attended Worthington High School

in Worthington, Ohio and graduated in 1972. In July of that

year, he entered the United States Military Academy in West

Point, New York and subsequently graduated with a Bachelor

of Science degree in June of 1976. After graduation Captain

Miller attended the Airborne Course at Fort Benning,

Georgia, the Signal Officer Basic Course at Fort Gordon,

Georgia and the Communications and Electronics Staff Officer

course at Fort Sill, Oklahoma. He was then assigned as the

Communications-Electronics Staff Officer for the 588th

Engineer Battalion (Corps) at Fort Polk, Louisiana. While at

Fort Polk, he also served as a Platoon Leader and Company

Commander in the 5th Signal Battalion, 5th Infantry Division

(Mechanized). After leaving Fort Polk, Captain Miller

attended the Signal Officbers Advanced Course at Fort Gordon,

Georgia and the Teleprocessing Operations Course at the Air

Force Institute of Technology at Wright-Patterson AFB, Ohio.

After completing the Teleprocessing Operations Course, he

entered the Air Force Institute of Technology School of

Engineering.

Permanent address: 416 Haymore Ave., X.

Worthington, Ohio 43085

105

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS 01401 ("Whe'to Mutw*Q _______________

REPOR DOCUMENTATION PAGE WADOR COMPTInG OR

1. REP3RT IhUMfflRA _1.0 iA-CefSilONNO . P1C1,*.rWT CATAL.OG NUMBER

APITIGCSIM&183H-l / -A~I 339____
aTITLE (4104 &ablftle) S. TVFE Ot F ~POPLT & PEROD COVERED

PRELIMINARY DESIGN AND IMPLEENTATION OF A METHD

FOR VALIDATING EVOLVING ADA C0OMPILERS MS Thesis

7. AuTI4OR(s) S. CONI RACT 00 GRANT NUMBER(e)

Edward D. Miller, Jr.
CPT USA

0PERFORMING ORGANIZATION NAME AND ADDRESS 10. PPOGPAIr LzodENT. PROJECT. TASK
APEDI A WORK UNIT NUMBERS

Air Force Institute of Technology (APIT/EN)
Wright-Patterson AFE, Ohio 45433

II. CONTROLLING OFFICE NAMIE AND ADDRESS 12. REPORT DATE

Language Control Branch (ADOL), March, 1983
Computer Operations Division, Aeronautical Sys Div Ise N'JMUP Off PAGES

Wrisht-Patterson AEOH45433 113
14. MONITORING ANC ME&ADDRIESSII differenut haom Controffiag Office) 1S. SECURITY CLASS. (of Chi* eport0)

Unclassified
ISe. DEC ASSI FICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of tise Report)

Approved for public release; distribution unlimited

1T. DISTRIBUTION STATEMENT (.1 Urn. abooet emterodi St aock"f, I dfiienmt free Report)

IS. SUPPLEMENTARY NOTES
law. 0rcb,1hd

W 1 R~edh nAProfessional qk

lkrmIauturte of Tqe"oaeol (AtO P
It. KEY WORDS (Cenue on revrse side if noesewv and Idenitifor by Weeck mneber)

Ada
Compilers
Validation

20. ABSTRACT (Can hu1e on revee side It IMe00eeey mid J4090dor bF bWeek Mmhber)

This project consisted of a preliminary design and a partial Implementation o
a tool which modifies the existing Ada Compiler Validation Capability (ACVC) tea
set so It can be used to test evolving Ada compilers. The project evaluated the
feasibility of repackaging each of test classes found in the ACVC and suggested
methods f or repackaging the tests.* The tool developed uses a table-driven
parser which parses the July 1980 proposed standard. it uses output from the
parser to generate a representation of a test program. Once the representation

DO I 'jAN71 1473 9mITow OP I NOV 6S 18 OSOLETE UCASFE
SECURITY CLASSIFICATION oP TwIS PAGE eSon"

INCLASSIFIRD
SICUMIT'N CLASSIFICATION Of THIS PAG[(MIan Dote ffMnt.,

Block 20

is developed, unsupported language-features are removed from it. The
remaining representation is output as a valid test program.

- I

* I ,

UNCL"SSIFIU
SUCURITY CLASIICATION OF THIS PAQWWARu 0.. Bn..e.

=7

